<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain the Lewis model of acid-base chemistry
  • Write equations for the formation of adducts and complex ions
  • Perform equilibrium calculations involving formation constants

In 1923, G. N. Lewis proposed a generalized definition of acid-base behavior in which acids and bases are identified by their ability to accept or to donate a pair of electrons and form a coordinate covalent bond.

A coordinate covalent bond    (or dative bond) occurs when one of the atoms in the bond provides both bonding electrons. For example, a coordinate covalent bond occurs when a water molecule combines with a hydrogen ion to form a hydronium ion. A coordinate covalent bond also results when an ammonia molecule combines with a hydrogen ion to form an ammonium ion. Both of these equations are shown here.

This figure shows two reactions represented with Lewis structures. The first shows an O atom bonded to two H atoms. The O atom has two lone pairs of electrons. There is a plus sign and then an H atom with a superscript positive sign followed by a right-facing arrow. The next Lewis structure is in brackets and shows an O atom bonded to three H atoms. There is one lone pair of electrons on the O atom. Outside of the brackets is a superscript positive sign. The second reaction shows an N atom bonded to three H atoms. The N atom has one lone pair of electrons. There is a plus sign and then an H superscript positive sign. After the H superscript positive sign is a right-facing arrow. The next Lewis structure is in brackets. It shows an N atom bonded to four H atoms. There is a superscript positive sign outside the brackets.

A Lewis acid    is any species (molecule or ion) that can accept a pair of electrons, and a Lewis base    is any species (molecule or ion) that can donate a pair of electrons.

A Lewis acid-base reaction occurs when a base donates a pair of electrons to an acid. A Lewis acid-base adduct    , a compound that contains a coordinate covalent bond between the Lewis acid and the Lewis base, is formed. The following equations illustrate the general application of the Lewis concept.

The boron atom in boron trifluoride, BF 3 , has only six electrons in its valence shell. Being short of the preferred octet, BF 3 is a very good Lewis acid and reacts with many Lewis bases; a fluoride ion is the Lewis base in this reaction, donating one of its lone pairs:

This figure illustrates a chemical reaction using structural formulas. On the left, an F atom is surrounded by four electron dot pairs and has a superscript negative symbol. This structure is labeled below as “Lewis base.” Following a plus sign is another structure which has a B atom at the center and three F atoms single bonded above, right, and below. Each F atom has three pairs of electron dots. This structure is labeled below as “Lewis acid.” Following a right pointing arrow is a structure in brackets that has a central B atom to which 4 F atoms are connected with single bonds above, below, to the left, and to the right. Each F atom in this structure has three pairs of electron dots. Outside the brackets is a superscript negative symbol. This structure is labeled below as “Acid-base adduct.”

In the following reaction, each of two ammonia molecules, Lewis bases, donates a pair of electrons to a silver ion, the Lewis acid:

This figure illustrates a chemical reaction using structural formulas. On the left side, a 2 preceeds an N atom which has H atoms single bonded above, to the left, and below. A single electron dot pair is on the right side of the N atom. This structure is labeled below as “Lewis base.” Following a plus sign is an A g atom which has a superscript plus symbol. Following a right pointing arrow is a structure in brackets that has a central A g atom to which N atoms are connected with single bonds to the left and to the right. Each of these N atoms has H atoms bonded above, below, and to the outside of the structure. Outside the brackets is a superscript plus symbol. This structure is labeled below as “Acid-base adduct.”

Nonmetal oxides act as Lewis acids and react with oxide ions, Lewis bases, to form oxyanions:

This figure illustrates a chemical reaction using structural formulas. On the left, an O atom is surrounded by four electron dot pairs and has a superscript 2 negative. This structure is labeled below as “Lewis base.” Following a plus sign is another structure which has an S atom at the center. O atoms are single bonded above and below. These O atoms have three electron dot pairs each. To the right of the S atom is a double bonded O atom which has two pairs of electron dots. This structure is labeled below as “Lewis acid.” Following a right pointing arrow is a structure in brackets that has a central S atom to which 4 O atoms are connected with single bonds above, below, to the left, and to the right. Each of the O atoms has three pairs of electron dots. Outside the brackets is a superscript 2 negative. This structure is labeled below as “Acid-base adduct.”

Many Lewis acid-base reactions are displacement reactions in which one Lewis base displaces another Lewis base from an acid-base adduct, or in which one Lewis acid displaces another Lewis acid:

This figure shows three chemical reactions in three rows using structural formulas. In the first row, to the left, in brackets is a structure that has a central A g atom to which N atoms are connected with single bonds to the left and to the right. Each of these N atoms has H atoms bonded above, below, and to the outside of the structure. Outside the brackets is a superscript plus symbol. This structure is labeled below as “Acid-base adduct.” Following a plus sign is a 2 and another structure in brackets that shows a C atom triple bonded to an N atom. The C atom has an unshared electron pair on its left side and the N atom has an unshared pair on its right side. Outside the brackets to the right is a superscript negative symbol. This structure is labeled below as “Base.” Following a right pointing arrow is a structure in brackets that has a central A g atom to which 4 FC atoms are connected with single bonds to the left and to the right. At each of the two ends, N atoms are triple bonded to the C atoms. The N atoms each have an unshared electron pair at the end of the structure. Outside the brackets is a superscript negative symbol. This structure is labeled below as “New adduct.” Following a plus sign is an N atom which has H atoms single bonded above, to the left, and below. A single electron dot pair is on the left side of the N atom. This structure is labeled below as “New base.” In the second row, on the left side in brackets is a structure with a central C atom. O atoms, each with three unshared electron pairs, are single bonded above and below and a third O atom, with two unshared electron pairs, is double bonded to the right. Outside the brackets is a superscript 2 negative. This structure is labeled below as “Acid-base adduct.” Following a plus sign is another structure which has an S atom at the center. O atoms are single bonded above and below. These O atoms have three electron dot pairs each. To the right of the S atom is a double bonded O atom which has two pairs of electron dots. This structure is labeled below as “Acid.” Following a right pointing arrow is a structure in brackets that has a central S atom to which 4 O atoms are connected with single bonds above, below, to the left, and to the right. Each of the O atoms has three pairs of electron dots. Outside the brackets is a superscript 2 negative. This structure is labeled below as “New adduct.”

The last displacement reaction shows how the reaction of a Brønsted-Lowry acid with a base fits into the Lewis concept. A Brønsted-Lowry acid such as HCl is an acid-base adduct according to the Lewis concept, and proton transfer occurs because a more stable acid-base adduct is formed. Thus, although the definitions of acids and bases in the two theories are quite different, the theories overlap considerably.

Many slightly soluble ionic solids dissolve when the concentration of the metal ion in solution is decreased through the formation of complex (polyatomic) ions in a Lewis acid-base reaction. For example, silver chloride dissolves in a solution of ammonia because the silver ion reacts with ammonia to form the complex ion     Ag ( NH 3 ) 2 + . The Lewis structure of the Ag ( NH 3 ) 2 + ion is:

A structure is shown in brackets. The structure has a central A g atom to which N atoms are single bonded to the left and right. Each of these atoms N atom has H atoms single bonded above, below, and to the outer end of the structure. Outside the brackets is a superscripted plus.

The equations for the dissolution of AgCl in a solution of NH 3 are:

AgCl ( s ) Ag + ( a q ) + Cl ( a q )
Ag + ( a q ) + 2 NH 3 ( a q ) Ag ( NH 3 ) 2 + ( a q )
Net: AgCl ( s ) + 2 NH 3 ( a q ) Ag ( NH 3 ) 2 + ( a q ) + Cl ( a q )

Aluminum hydroxide dissolves in a solution of sodium hydroxide or another strong base because of the formation of the complex ion Al ( OH ) 4 . The Lewis structure of the Al ( OH ) 4 ion is:

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask