<< Chapter < Page Chapter >> Page >

Other significant industrial processes that involve the use of heterogeneous catalysts include the preparation of sulfuric acid, the preparation of ammonia, the oxidation of ammonia to nitric acid, and the synthesis of methanol, CH 3 OH. Heterogeneous catalysts are also used in the catalytic converters found on most gasoline-powered automobiles ( [link] ).

Automobile catalytic converters

Scientists developed catalytic converters to reduce the amount of toxic emissions produced by burning gasoline in internal combustion engines. Catalytic converters take advantage of all five factors that affect the speed of chemical reactions to ensure that exhaust emissions are as safe as possible.

By utilizing a carefully selected blend of catalytically active metals, it is possible to effect complete combustion of all carbon-containing compounds to carbon dioxide while also reducing the output of nitrogen oxides. This is particularly impressive when we consider that one step involves adding more oxygen to the molecule and the other involves removing the oxygen ( [link] ).

An image is shown of a catalytic converter. At the upper left, a blue arrow pointing into a pipe that enters a larger, widened chamber is labeled, “Dirty emissions.” A small black arrow that points to the lower right is positioned along the upper left side of the widened region. This arrow is labeled, “Additional oxygen from air pump.” The image shows the converter with the upper surface removed, exposing a red-brown interior. The portion of the converter closest to the dirty emissions inlet shows small, round components in an interior layer. This layer is labeled “Three-way reduction catalyst.” The middle region shows closely packed small brown rods that are aligned parallel to the dirty emissions inlet pipe. The final quarter of the interior of the catalytic converter again shows a layer of closely packed small red brown circles. Two large light grey arrows extend from this layer to the open region at the lower right of the image to the label “Clean emissions.”
A catalytic converter allows for the combustion of all carbon-containing compounds to carbon dioxide, while at the same time reducing the output of nitrogen oxide and other pollutants in emissions from gasoline-burning engines.

Most modern, three-way catalytic converters possess a surface impregnated with a platinum-rhodium catalyst, which catalyzes the conversion nitric oxide into dinitrogen and oxygen as well as the conversion of carbon monoxide and hydrocarbons such as octane into carbon dioxide and water vapor:

2 NO 2 ( g ) N 2 ( g ) + 2 O 2 ( g ) 2 CO( g ) + O 2 ( g ) 2 CO 2 ( g ) 2 C 8 H 18 ( g ) + 25 O 2 ( g ) 16 CO 2 ( g ) + 18 H 2 O ( g )

In order to be as efficient as possible, most catalytic converters are preheated by an electric heater. This ensures that the metals in the catalyst are fully active even before the automobile exhaust is hot enough to maintain appropriate reaction temperatures.

Enzyme structure and function

The study of enzymes is an important interconnection between biology and chemistry. Enzymes are usually proteins (polypeptides) that help to control the rate of chemical reactions between biologically important compounds, particularly those that are involved in cellular metabolism. Different classes of enzymes perform a variety of functions, as shown in [link] .

Classes of Enzymes and Their Functions
Class Function
oxidoreductases redox reactions
transferases transfer of functional groups
hydrolases hydrolysis reactions
lyases group elimination to form double bonds
isomerases isomerization
ligases bond formation with ATP hydrolysis

Enzyme molecules possess an active site, a part of the molecule with a shape that allows it to bond to a specific substrate (a reactant molecule), forming an enzyme-substrate complex as a reaction intermediate. There are two models that attempt to explain how this active site works. The most simplistic model is referred to as the lock-and-key hypothesis, which suggests that the molecular shapes of the active site and substrate are complementary, fitting together like a key in a lock. The induced fit hypothesis, on the other hand, suggests that the enzyme molecule is flexible and changes shape to accommodate a bond with the substrate. This is not to suggest that an enzyme’s active site is completely malleable, however. Both the lock-and-key model and the induced fit model account for the fact that enzymes can only bind with specific substrates, since in general a particular enzyme only catalyzes a particular reaction ( [link] ).

A diagram is shown of two possible interactions of an enzyme and a substrate. In a, which is labeled “Lock-and-key,” two diagrams are shown. The first shows a green wedge-like shape with two small depressions in the upper surface of similar size, but the depression on the left has a curved shape, and the depression on the right has a pointed shape. This green shape is labeled “Enzyme.” Just above this shape are two smaller, irregular, lavender shapes each with a projection from its lower surface. The lavender shape on the left has a curved projection which matches the shape of the depression on the left in the green shape below. This projection is shaded orange and has a curved arrow extending from in to the matching depression in the green shape below. Similarly, the lavender shape on the right has a projection with a pointed tip which matches the shape of the depression on the right in the green shape below. This projection is shaded orange and has a curved arrow extending from in to the matching depression in the green shape below. Two line segments extend from the depressions in the green shape to form an inverted V shape above the depressions. Above this and between the lavender shapes is the label, “Active site is proper shape.” The label “Substrates” is at the very top of the diagram with line segments extending to the two lavender shapes. To the right of this diagram is a second diagram showing the lavender shapes positioned next to each other, fit snugly into the depressions in the green shape, which is labeled “Enzyme.” Above this diagram is the label, “Substrate complex formed.” In b, which is labeled “Induced fit,” two diagrams are shown. The first shows a green wedge-like shape with two small depressions in the upper surface of similar size, but irregular shape. This green shape is labeled “Enzyme.” Just above this shape are two smaller irregular lavender shapes each with a projection from its lower surface. The lavender shape on the left has a curved projection. This projection is shaded orange and has a curved arrow extending from it to the irregular depression just below it in the green shape below. Similarly, the lavender shape on the right has a projection with a pointed tip. This projection is shaded orange and has a curved arrow extending from it to the irregular depression just below it in the green shape below. Two line segments extend from the depressions in the green shape to form an inverted V shape above the depressions. Above this and between the lavender shapes is the label, “Active site changes to fit.” The label, “Substrates” is at the very top of the diagram with line segments extending to the two lavender shapes. To the right of this diagram is a second diagram showing the purple shapes positioned next to each other, fit snugly into the depressions in the green shape, which is labeled “Enzyme.” Above this diagram is the label “Substrate complex formed.” The projections from the lavender shapes match the depression shapes in the green shape, resulting in a proper fit.
(a) According to the lock-and-key model, the shape of an enzyme’s active site is a perfect fit for the substrate. (b) According to the induced fit model, the active site is somewhat flexible, and can change shape in order to bond with the substrate.

Key concepts and summary

Catalysts affect the rate of a chemical reaction by altering its mechanism to provide a lower activation energy. Catalysts can be homogenous (in the same phase as the reactants) or heterogeneous (a different phase than the reactants).

Chemistry end of chapter exercises

Account for the increase in reaction rate brought about by a catalyst.

The general mode of action for a catalyst is to provide a mechanism by which the reactants can unite more readily by taking a path with a lower reaction energy. The rates of both the forward and the reverse reactions are increased, leading to a faster achievement of equilibrium.

Got questions? Get instant answers now!

Compare the functions of homogeneous and heterogeneous catalysts.

Got questions? Get instant answers now!

Consider this scenario and answer the following questions: Chlorine atoms resulting from decomposition of chlorofluoromethanes, such as CCl 2 F 2 , catalyze the decomposition of ozone in the atmosphere. One simplified mechanism for the decomposition is:
O 3 sunlight O 2 + O O 3 + Cl O 2 + ClO ClO + O Cl + O 2

(a) Explain why chlorine atoms are catalysts in the gas-phase transformation:
2 O 3 3 O 2

(b) Nitric oxide is also involved in the decomposition of ozone by the mechanism:
O 3 sunlight O 2 + O O 3 + NO NO 2 + O 2 NO 2 + O NO + O 2

Is NO a catalyst for the decomposition? Explain your answer.

(a) Chlorine atoms are a catalyst because they react in the second step but are regenerated in the third step. Thus, they are not used up, which is a characteristic of catalysts. (b) NO is a catalyst for the same reason as in part (a).

Got questions? Get instant answers now!

For each of the following pairs of reaction diagrams, identify which of the pair is catalyzed:

(a)
In this figure, two graphs are shown. The x-axes are labeled, “Extent of reaction,” and the y-axes are labeled, “Energy (k J).” The y-axis of the first graph is marked off from 0 to 30 in intervals of 5. The y-axis of the second graph is marked off from 0 to 25 by intervals of 5. In a, a blue curve is shown. It begins with a horizontal region at about 12. The curve then rises sharply near the middle to reach a maximum of about 24 and similarly falls to another horizontal segment at 5. In b, the curve begins and ends similarly, but the maximum reached near the center of the graph is only 20.

(b)
In this figure, two graphs are shown. The x-axes are labeled, “Extent of reaction,” and the y-axes are labeled, “Energy.” The y-axes are marked off from 0 to 50 in intervals of 5. In a, a blue curve is shown. It begins with a horizontal region at about 2. The curve then rises sharply near the middle to reach a maximum of about 43 and similarly falls to another horizontal segment at 15. In b, the curve begins and ends similarly, but the maximum reached near the center of the graph is only about 32.

Got questions? Get instant answers now!

For each of the following pairs of reaction diagrams, identify which of the pairs is catalyzed:

(a)
In this figure, two graphs are shown. The x-axes are labeled, “Extent of reaction” and the y-axes are labeled, “Energy (k J).” The y-axes are marked off from 0 to 50 at intervals of 5. In a, a blue curve is shown. It begins with a horizontal segment at about 2J. The curve then rises sharply near the middle to reach a maximum of about 46, then sharply falls to about 35, again rises to about 38 and falls to another horizontal segment at about 15. In b, the curve begins and ends similarly, but the first peak reaches about 46, drops to about 35, then rises to about 43 before falling to the horizontal region at about 15.

(b)
In this figure, two graphs are shown. The x-axes are labeled, “Extent of reaction,” and the y-axes are labeled, “Energy (k J).” The y-axes are marked off from 0 to 50 at intervals of 5. In a, a blue curve is shown. It begins with a horizontal segment at about 34. The curve then rises sharply near the middle to reach a maximum of about 45, then sharply falls to about 25, again rises sharply to about 35 and falls to another horizontal segment at about 15. In b, the curve begins and ends similarly, but the first peak reaches about 40, drops to 25, then rises to 35 before falling to the horizontal region at about 15.

The lowering of the transition state energy indicates the effect of a catalyst. (a) A; (b) B

Got questions? Get instant answers now!

For each of the following reaction diagrams, estimate the activation energy ( E a ) of the reaction:

(a)
This figure shows a graph. The x-axis is labeled, “Extent of reaction,” and the y-axis is labeled, “Energy (k J).” The y-axis is marked off from 0 to 40 at intervals of 5. A blue curve is shown. It begins with a horizontal region at 10. The curve then rises sharply near the middle to reach a maximum of 35 and similarly falls to another horizontal segment at 5.

(b)
This figure shows a graph. The x-axis is labeled, “Extent of reaction,” and the y-axis is labeled, “Energy (k J).” The y-axis is marked off from 0 to 40 at intervals of 5. A blue curve is shown. It begins with a horizontal region at 10. The curve then rises sharply near the middle to reach a maximum of 20 and similarly falls to another horizontal segment at 5.

Got questions? Get instant answers now!

For each of the following reaction diagrams, estimate the activation energy ( E a ) of the reaction:

(a)
In this figure, a graph is shown. The x-axis is labeled, “Extent of reaction,” and the y-axis is labeled, “Energy (k J).” A blue curve is shown. It begins with a horizontal segment at about 35. The curve then rises sharply near the middle to reach a maximum of about 45, then sharply falls to about 24, again rises to about 30 and falls to another horizontal segment at about 15.

(b)
In this figure, a graph is shown. The x-axis is labeled, “Extent of reaction,” and the y-axis is labeled, “Energy (k J).” A blue curve is shown. It begins with a horizontal segment at about 35. The curve then rises sharply near the middle to reach a maximum of about 45, then sharply falls to about 40, again rises to about 45 and falls to another horizontal segment at about 20.

The energy needed to go from the initial state to the transition state is (a) 10 kJ; (b) 10 kJ

Got questions? Get instant answers now!

Based on the diagrams in [link] , which of the reactions has the fastest rate? Which has the slowest rate?

Got questions? Get instant answers now!

Based on the diagrams in [link] , which of the reactions has the fastest rate? Which has the slowest rate?

Both have the same activation energy, so they also have the same rate.

Got questions? Get instant answers now!

Questions & Answers

explain the basic method of power of power rule under indices.
Sumo Reply
Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask