<< Chapter < Page Chapter >> Page >

A homogeneous mixture    , also called a solution , exhibits a uniform composition and appears visually the same throughout. An example of a solution is a sports drink, consisting of water, sugar, coloring, flavoring, and electrolytes mixed together uniformly ( [link] ). Each drop of a sports drink tastes the same because each drop contains the same amounts of water, sugar, and other components. Note that the composition of a sports drink can vary—it could be made with somewhat more or less sugar, flavoring, or other components, and still be a sports drink. Other examples of homogeneous mixtures include air, maple syrup, gasoline, and a solution of salt in water.

Diagram A shows a glass containing a red liquid with a layer of yellow oil floating on the surface of the red liquid. A zoom in box is magnifying a portion of the red liquid that contains some of the yellow oil. The zoomed in image shows that oil is forming round droplets within the red liquid. Diagram B shows a photo of Gatorade G 2. A zoom in box is magnifying a portion of the Gatorade, which is uniformly red.
(a) Oil and vinegar salad dressing is a heterogeneous mixture because its composition is not uniform throughout. (b) A commercial sports drink is a homogeneous mixture because its composition is uniform throughout. (credit a “left”: modification of work by John Mayer; credit a “right”: modification of work by Umberto Salvagnin; credit b “left: modification of work by Jeff Bedford)

Although there are just over 100 elements, tens of millions of chemical compounds result from different combinations of these elements. Each compound has a specific composition and possesses definite chemical and physical properties by which we can distinguish it from all other compounds. And, of course, there are innumerable ways to combine elements and compounds to form different mixtures. A summary of how to distinguish between the various major classifications of matter is shown in ( [link] ).

This flow chart begins with matter at the top and the question: does the matter have constant properties and composition? If no, then it is a mixture. This leads to the next question: is it uniform throughout? If no, it is heterogeneous. If yes, it is homogenous. If the matter does have constant properties and composition, it is a pure substance. This leads to the next question: can it be simplified chemically? If no, it is an element. If yes, then it is a compound.
Depending on its properties, a given substance can be classified as a homogeneous mixture, a heterogeneous mixture, a compound, or an element.

Eleven elements make up about 99% of the earth’s crust and atmosphere ( [link] ). Oxygen constitutes nearly one-half and silicon about one-quarter of the total quantity of these elements. A majority of elements on earth are found in chemical combinations with other elements; about one-quarter of the elements are also found in the free state.

Elemental Composition of Earth
Element Symbol Percent Mass Element Symbol Percent Mass
oxygen O 49.20 chlorine Cl 0.19
silicon Si 25.67 phosphorus P 0.11
aluminum Al 7.50 manganese Mn 0.09
iron Fe 4.71 carbon C 0.08
calcium Ca 3.39 sulfur S 0.06
sodium Na 2.63 barium Ba 0.04
potassium K 2.40 nitrogen N 0.03
magnesium Mg 1.93 fluorine F 0.03
hydrogen H 0.87 strontium Sr 0.02
titanium Ti 0.58 all others - 0.47

Decomposition of water / production of hydrogen

Water consists of the elements hydrogen and oxygen combined in a 2 to 1 ratio. Water can be broken down into hydrogen and oxygen gases by the addition of energy. One way to do this is with a battery or power supply, as shown in ( [link] ).

A rectangular battery is immersed in a beaker filled with liquid. Each of the battery terminals are covered by an overturned test tube. The test tubes each contain a bubbling liquid. Zoom in areas indicate that the liquid in the beaker is water, 2 H subscript 2 O liquid. The bubbles in the test tube over the negative terminal are hydrogen gas, 2 H subscript 2 gas. The bubbles in the test tube over the positive terminal are oxygen gas, O subscript 2 gas.
The decomposition of water is shown at the macroscopic, microscopic, and symbolic levels. The battery provides an electric current (microscopic) that decomposes water. At the macroscopic level, the liquid separates into the gases hydrogen (on the left) and oxygen (on the right). Symbolically, this change is presented by showing how liquid H 2 O separates into H 2 and O 2 gases.

The breakdown of water involves a rearrangement of the atoms in water molecules into different molecules, each composed of two hydrogen atoms and two oxygen atoms, respectively. Two water molecules form one oxygen molecule and two hydrogen molecules. The representation for what occurs, 2 H 2 O ( l ) 2 H 2 ( g ) + O 2 ( g ) , will be explored in more depth in later chapters.

The two gases produced have distinctly different properties. Oxygen is not flammable but is required for combustion of a fuel, and hydrogen is highly flammable and a potent energy source. How might this knowledge be applied in our world? One application involves research into more fuel-efficient transportation. Fuel-cell vehicles (FCV) run on hydrogen instead of gasoline ( [link] ). They are more efficient than vehicles with internal combustion engines, are nonpolluting, and reduce greenhouse gas emissions, making us less dependent on fossil fuels. FCVs are not yet economically viable, however, and current hydrogen production depends on natural gas. If we can develop a process to economically decompose water, or produce hydrogen in another environmentally sound way, FCVs may be the way of the future.

The fuel cell consists of a proton exchange membrane sandwiched between an anode and a cathode. Hydrogen gas enters the battery near the anode. Oxygen gas enters the battery near the cathode. The entering hydrogen gas is broken up into single white spheres that each have a positive charge. These are protons. The protons repel negatively-charged electrons within the anode. These electrons travel through a circuit, providing electricity to anything attached to the battery. The protons continue through the proton exchange membrane and through the cathode to reach the oxygen gas molecules at the opposite end of the battery. There, the oxygen atoms split up into single red spheres. Each oxygen atom takes on two of the incoming protons to form a water molecule.
A fuel cell generates electrical energy from hydrogen and oxygen via an electrochemical process and produces only water as the waste product.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask