A = area , V = Volume , and S = lateral surface area
x m x n = x m + n x m x n = x m − n ( x m ) n = x m n x − n = 1 x n ( x y ) n = x n y n ( x y ) n = x n y n x 1 / n = x n x y n = x n y n x y n = x n y n x m / n = x m n = ( x n ) m
x 2 − y 2 = ( x + y ) ( x − y ) x 3 + y 3 = ( x + y ) ( x 2 − x y + y 2 ) x 3 − y 3 = ( x − y ) ( x 2 + x y + y 2 )
If a x 2 + b x + c = 0 , then x = − b ± b 2 − 4 c a 2 a .
( a + b ) n = a n + ( n 1 ) a n − 1 b + ( n 2 ) a n − 2 b 2 + ⋯ + ( n n − 1 ) a b n − 1 + b n ,
where ( n k ) = n ( n − 1 ) ( n − 2 ) ⋯ ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) ⋯ 3 ⋅ 2 ⋅ 1 = n ! k ! ( n − k ) !
sin θ = opp hyp csc θ = hyp opp cos θ = adj hyp sec θ = hyp adj tan θ = opp adj cot θ = adj opp
sin 2 θ + cos 2 θ = 1 sin ( − θ ) = − sin θ 1 + tan 2 θ = sec 2 θ cos ( − θ ) = cos θ 1 + cot 2 θ = csc 2 θ tan ( − θ ) = − tan θ sin ( π 2 − θ ) = cos θ sin ( θ + 2 π ) = sin θ cos ( π 2 − θ ) = sin θ cos ( θ + 2 π ) = cos θ tan ( π 2 − θ ) = cot θ tan ( θ + π ) = tan θ
sin A a = sin B b = sin C c
a 2 = b 2 + c 2 − 2 b c cos A b 2 = a 2 + c 2 − 2 a c cos B c 2 = a 2 + b 2 − 2 a b cos C
sin ( x + y ) = sin x cos y + cos x sin y sin ( x − y ) = sin x cos y − cos x sin y cos ( x + y ) = cos x cos y − sin x sin y cos ( x − y ) = cos x cos y + sin x sin y tan ( x + y ) = tan x + tan y 1 − tan x tan y tan ( x − y ) = tan x − tan y 1 + tan x tan y
sin 2 x = 2 sin x cos x cos 2 x = cos 2 x − sin 2 x = 2 cos 2 x − 1 = 1 − 2 sin 2 x tan 2 x = 2 tan x 1 − tan 2 x
sin 2 x = 1 − cos 2 x 2 cos 2 x = 1 + cos 2 x 2
Notification Switch
Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?
Jobilize.com uses cookies to ensure that you get the best experience. By continuing to use Jobilize.com web-site, you agree to the Terms of Use.