<< Chapter < Page Chapter >> Page >

Cost

Our textbooks are available for free online, and in low-cost print and e-book editions.

About Calculus Volume 1

Calculus Volume 1 is the first of three volumes designed for the two- or three-semester calculus course. For many students, this course provides the foundation to a career in mathematics, science, or engineering. As such, this textbook provides an important opportunity for students to learn the core concepts of calculus and understand how those concepts apply to their lives and the world around them. The text has been developed to meet the scope and sequence of most general calculus courses. At the same time, the book includes several innovative features designed to enhance student learning. A strength of Calculus Volume 1 is that instructors can customize the book, adapting it to the approach that works best in their classroom.

Coverage and scope

Our Calculus Volume 1 textbook adheres to the scope and sequence of most general calculus courses nationwide. We have worked to make calculus interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of the three volumes of Calculus have been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from mathematics educators dedicated to the project.

    Volume 1

  • Chapter 1: Functions and Graphs
  • Chapter 2: Limits
  • Chapter 3: Derivatives
  • Chapter 4: Applications of Derivatives
  • Chapter 5: Integration
  • Chapter 6: Applications of Integration

    Volume 2

  • Chapter 1: Integration
  • Chapter 2: Applications of Integration
  • Chapter 3: Techniques of Integration
  • Chapter 4: Introduction to Differential Equations
  • Chapter 5: Sequences and Series
  • Chapter 6: Power Series
  • Chapter 7: Parametric Equations and Polar Coordinates

    Volume 3

  • Chapter 1: Parametric Equations and Polar Coordinates
  • Chapter 2: Vectors in Space
  • Chapter 3: Vector-Valued Functions
  • Chapter 4: Differentiation of Functions of Several Variables
  • Chapter 5: Multiple Integration
  • Chapter 6: Vector Calculus
  • Chapter 7: Second-Order Differential Equations

Pedagogical foundation

Throughout Calculus Volume 1 you will find examples and exercises that present classical ideas and techniques as well as modern applications and methods. Derivations and explanations are based on years of classroom experience on the part of long-time calculus professors, striving for a balance of clarity and rigor that has proven successful with their students. Motivational applications cover important topics in probability, biology, ecology, business, and economics, as well as areas of physics, chemistry, engineering, and computer science. Student Projects in each chapter give students opportunities to explore interesting sidelights in pure and applied mathematics, from determining a safe distance between the grandstand and the track at a Formula One racetrack, to calculating the center of mass of the Grand Canyon Skywalk or the terminal speed of a skydiver. Chapter Opening Applications pose problems that are solved later in the chapter, using the ideas covered in that chapter. Problems include the hydraulic force against the Hoover Dam, and the comparison of relative intensity of two earthquakes. Definitions, Rules, and Theorems are highlighted throughout the text, including over 60 Proofs of theorems.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask