<< Chapter < Page Chapter >> Page >

If a quantity grows exponentially, the time it takes for the quantity to double remains constant. In other words, it takes the same amount of time for a population of bacteria to grow from 100 to 200 bacteria as it does to grow from 10,000 to 20,000 bacteria. This time is called the doubling time. To calculate the doubling time, we want to know when the quantity reaches twice its original size. So we have

2 y 0 = y 0 e k t 2 = e k t ln 2 = k t t = ln 2 k .

Definition

If a quantity grows exponentially, the doubling time    is the amount of time it takes the quantity to double. It is given by

Doubling time = ln 2 k .

Using the doubling time

Assume a population of fish grows exponentially. A pond is stocked initially with 500 fish. After 6 months, there are 1000 fish in the pond. The owner will allow his friends and neighbors to fish on his pond after the fish population reaches 10,000 . When will the owner’s friends be allowed to fish?

We know it takes the population of fish 6 months to double in size. So, if t represents time in months, by the doubling-time formula, we have 6 = ( ln 2 ) / k . Then, k = ( ln 2 ) / 6 . Thus, the population is given by y = 500 e ( ( ln 2 ) / 6 ) t . To figure out when the population reaches 10,000 fish, we must solve the following equation:

10,000 = 500 e ( ln 2 / 6 ) t 20 = e ( ln 2 / 6 ) t ln 20 = ( ln 2 6 ) t t = 6 ( ln 20 ) ln 2 25.93.

The owner’s friends have to wait 25.93 months (a little more than 2 years) to fish in the pond.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Suppose it takes 9 months for the fish population in [link] to reach 1000 fish. Under these circumstances, how long do the owner’s friends have to wait?

38.90 months

Got questions? Get instant answers now!

Exponential decay model

Exponential functions can also be used to model populations that shrink (from disease, for example), or chemical compounds that break down over time. We say that such systems exhibit exponential decay, rather than exponential growth. The model is nearly the same, except there is a negative sign in the exponent. Thus, for some positive constant k , we have y = y 0 e k t .

As with exponential growth, there is a differential equation associated with exponential decay. We have

y = k y 0 e k t = k y .

Rule: exponential decay model

Systems that exhibit exponential decay    behave according to the model

y = y 0 e k t ,

where y 0 represents the initial state of the system and k > 0 is a constant, called the decay constant .

The following figure shows a graph of a representative exponential decay function.

This figure is a graph in the first quadrant. It is a decreasing exponential curve. It begins on the y-axis at 2000 and decreases towards the t-axis.
An example of exponential decay.

Let’s look at a physical application of exponential decay. Newton’s law of cooling says that an object cools at a rate proportional to the difference between the temperature of the object and the temperature of the surroundings. In other words, if T represents the temperature of the object and T a represents the ambient temperature in a room, then

T = k ( T T a ) .

Note that this is not quite the right model for exponential decay. We want the derivative to be proportional to the function, and this expression has the additional T a term. Fortunately, we can make a change of variables that resolves this issue. Let y ( t ) = T ( t ) T a . Then y ( t ) = T ( t ) 0 = T ( t ) , and our equation becomes

y = k y .

From our previous work, we know this relationship between y and its derivative leads to exponential decay. Thus,

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask