<< Chapter < Page Chapter >> Page >
This module covers two important theorems, including the fundamental theorem of calculus.

We begin this section with a result that is certainly not a surprise, but we will need it at various places in later proofs, so it's good to state it precisely now.

Suppose f I ( [ a , b ] ) , and suppose a < c < b . Then f I ( [ a , c ] ) , f I ( [ c , b ] ) , and

a b f = a c f + c b f .

Suppose first that h is a step function on [ a , b ] , and let P = { x 0 < x 1 < ... < x n } be a partition of [ a , b ] such that h ( x ) = a i on the subinterval ( x i - 1 , x i ) of P . Of course, we may assume without loss of generality that c is one of the points of P , say c = x k . Clearly h is a step function on both intervals [ a , c ] and [ c , b ] .

Now, let Q 1 = { a = x 0 < x 1 < ... < c = x k } be the partition of [ a , c ] obtained by intersecting P with [ a , c ] , and let Q 2 = { c = x k < x k + 1 < ... < x n = b } be the partition of [ c , b ] obtained by intersecting P with [ c , b ] . We have that

a b h = S P ( h ) = i = 1 n a i ( x i - x i - 1 ) = i = 1 k a i ( x i - x i - 1 ) + i = k + 1 n a i ( x i - x i - 1 ) = S Q 1 ( h ) + S Q 2 ( h ) = a c h + c b h ,

which proves the theorem for step functions.

Now, write f = lim h n , where each h n is a step function on [ a , b ] . Then clearly f = lim h n on [ a , c ] , which shows that f I ( [ a , c ] ) , and

a c f = lim a c h n .

Similarly, f = lim h n on [ c , b ] , showing that f I ( [ c , b ] ) , and

c b f = lim c b h n .

Finally,

a b f = lim a b h n = lim ( a c h n + c b h n ) = lim a c h n + lim c b h n = a c f + c b f ,

as desired.

I's time for the trumpets again! What we call the Fundamental Theorem of Calculuswas discovered by Newton and Leibniz more or less simultaneously in the seventeenth century, and it is without doubt the cornerstone of all we call mathematical analysis today.Perhaps the main theoretical consequence of this theorem is that it provides a procedure for inventing “new” functions. Polynomials are rather naturalfunctions, power series are a simple generalization of polynomials, and then what? It all came down to thinking of a function of a variable x as being the area beneath a curve between a fixed point a and the varying point x . By now, we have polished and massaged these ideas into a careful, detailed development of the subject, which has substantially obscured the originalingenious insights of Newton and Leibniz. On the other hand, our development and proofs are complete, while theirs were based heavily on their intuition.So, here it is.

Fundamental theorem of calculus

Suppose f is an arbitrary element of I ( [ a , b ] ) . Define a function F on [ a , b ] by F ( x ) = a x f . Then:

  1.   F is continuous on [ a , b ] , and F ( a ) = 0 .
  2. If f is continuous at a point c ( a , b ) , then F is differentiable at c and F ' ( c ) = f ( c ) .
  3. Suppose that f is continuous on [ a , b ] . If G is any continuous function on [ a , b ] that is differentiable on ( a , b ) and satisfies G ' ( x ) = f ( x ) for all x ( a , b ) , then
    a b f ( t ) d t = G ( b ) - G ( a ) .

REMARK Part (2) of this theorem is the heart of it, the great discovery of Newton and Leibniz,although most beginning calculus students often think of part (3) as the main statement. Of course it is that third part that enables us to actually compute integrals.

Because f I ( [ a , b ] ) , we know that f I ( [ a , x ] ) for every x [ a , b ] , so that F ( x ) at least is defined.

Also, we know that f is bounded; i.e., there exists an M such that | f ( t ) | M for all t [ a , b ] . Then, if x , y [ a , b ] with x y , we have that

| F ( x ) - F ( y ) | = | a x f - a y f | = | a y f + y x f - a y f | = | y x f | y x | f | y x M = M ( x - y ) ,

so that | F ( x ) - F ( y ) | M | x - y | < ϵ if | x - y | < δ = ϵ / M . This shows that F is (uniformly) continuous on [ a , b ] . Obviously, F ( a ) = a a f = 0 , and part (1) is proved.

Next, suppose that f is continuous at c ( a , b ) , and write L = f ( c ) . Let ϵ > 0 be given. To show that F is differentiable at c and that F ' ( c ) = f ( c ) , we must find a δ > 0 such that if 0 < | h | < δ then

| F ( c + h ) - F ( c ) h - L | < ϵ .

Since f is continuous at c , choose δ > 0 so that | f ( t ) - f ( c ) | < ϵ if | t - c | < δ . Now, assuming that h > 0 for the moment, we have that

F ( c + h ) - F ( c ) = a c + h f - a c f = a c f + c c + h f - a c f = c c + h f ,

and

L = c c + h L h .

So, if 0 < h < δ , then

| F ( c + h ) - F ( c ) h - L | = | c c + h f ( t ) d t h - c c + h L h | = | c c + h ( f ( t ) - L ) d t h | c c + h | f ( t ) - L | d t h = c c + h | f ( t ) - f ( c ) | d t h c c + h ϵ h = ϵ ,

where the last inequality follows because for t [ c , c + h ] , we have that | t - c | h < δ . A similar argument holds if h < 0 . (See the following exercise.) This proves part (2).

Suppose finally that G is continuous on [ a , b ] , differentiable on ( a , b ) , and that G ' ( x ) = f ( x ) for all x ( a , b ) . Then, F - G is continuous on [ a , b ] , differentiable on ( a , b ) , and by part (2) ( F - G ) ' ( x ) = F ' ( x ) - G ' ( x ) = f ( x ) - f ( x ) = 0 for all x ( a , b ) . It then follows from [link] that F - G is a constant function C , whence,

G ( b ) - G ( a ) = F ( b ) + C - F ( a ) - C = F ( b ) = a b f ( t ) d t ,

and the theorem is proved.

  1. Complete the proof of part (2) of the preceding theorem; i.e., take care of the case when h < 0 . HINT: In this case, a < c + h < c . Then, write a c f = a c + h f + c + h c f .
  2. Suppose f is a continuous function on the closed interval [ a , b ] , and that f ' exists and is continuous on the open interval ( a , b ) . Assume further that f ' is integrable on the closed interval [ a , b ] . Prove that f ( x ) - f ( a ) = a x f ' for all x [ a , b ] . Be careful to understand how this is different from the Fundamental Theorem.
  3. Use the Fundamental Theorem to prove that for x 1 we have
    ln ( x ) = F ( x ) 1 x 1 t d t ,
    and for 0 < x < 1 we have
    ln ( x ) = F ( x ) - x 1 1 t d t .
    HINT: Show that these two functions have the same derivative and agree at x = 1 .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Analysis of functions of a single variable. OpenStax CNX. Dec 11, 2010 Download for free at http://cnx.org/content/col11249/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Analysis of functions of a single variable' conversation and receive update notifications?

Ask