<< Chapter < Page Chapter >> Page >
  • Calculate the limit of a function as x increases or decreases without bound.
  • Recognize a horizontal asymptote on the graph of a function.
  • Estimate the end behavior of a function as x increases or decreases without bound.
  • Recognize an oblique asymptote on the graph of a function.
  • Analyze a function and its derivatives to draw its graph.

We have shown how to use the first and second derivatives of a function to describe the shape of a graph. To graph a function f defined on an unbounded domain, we also need to know the behavior of f as x ± . In this section, we define limits at infinity and show how these limits affect the graph of a function. At the end of this section, we outline a strategy for graphing an arbitrary function f .

Limits at infinity

We begin by examining what it means for a function to have a finite limit at infinity. Then we study the idea of a function with an infinite limit at infinity. Back in Introduction to Functions and Graphs , we looked at vertical asymptotes; in this section we deal with horizontal and oblique asymptotes.

Limits at infinity and horizontal asymptotes

Recall that lim x a f ( x ) = L means f ( x ) becomes arbitrarily close to L as long as x is sufficiently close to a . We can extend this idea to limits at infinity. For example, consider the function f ( x ) = 2 + 1 x . As can be seen graphically in [link] and numerically in [link] , as the values of x get larger, the values of f ( x ) approach 2 . We say the limit as x approaches of f ( x ) is 2 and write lim x f ( x ) = 2 . Similarly, for x < 0 , as the values | x | get larger, the values of f ( x ) approaches 2 . We say the limit as x approaches of f ( x ) is 2 and write lim x a f ( x ) = 2 .

The function f(x) 2 + 1/x is graphed. The function starts negative near y = 2 but then decreases to −∞ near x = 0. The function then decreases from ∞ near x = 0 and gets nearer to y = 2 as x increases. There is a horizontal line denoting the asymptote y = 2.
The function approaches the asymptote y = 2 as x approaches ± .
Values of a function f As x ±
x 10 100 1,000 10,000
2 + 1 x 2.1 2.01 2.001 2.0001
x −10 −100 −1000 −10,000
2 + 1 x 1.9 1.99 1.999 1.9999

More generally, for any function f , we say the limit as x of f ( x ) is L if f ( x ) becomes arbitrarily close to L as long as x is sufficiently large. In that case, we write lim x a f ( x ) = L . Similarly, we say the limit as x of f ( x ) is L if f ( x ) becomes arbitrarily close to L as long as x < 0 and | x | is sufficiently large. In that case, we write lim x f ( x ) = L . We now look at the definition of a function having a limit at infinity.

Definition

(Informal) If the values of f ( x ) become arbitrarily close to L as x becomes sufficiently large, we say the function f has a limit at infinity    and write

lim x f ( x ) = L .

If the values of f ( x ) becomes arbitrarily close to L for x < 0 as | x | becomes sufficiently large, we say that the function f has a limit at negative infinity and write

lim x f ( x ) = L .

If the values f ( x ) are getting arbitrarily close to some finite value L as x or x , the graph of f approaches the line y = L . In that case, the line y = L is a horizontal asymptote of f ( [link] ). For example, for the function f ( x ) = 1 x , since lim x f ( x ) = 0 , the line y = 0 is a horizontal asymptote of f ( x ) = 1 x .

Definition

If lim x f ( x ) = L or lim x f ( x ) = L , we say the line y = L is a horizontal asymptote    of f .

The figure is broken up into two figures labeled a and b. Figure a shows a function f(x) approaching but never touching a horizontal dashed line labeled L from above. Figure b shows a function f(x) approaching but never a horizontal dashed line labeled M from below.
(a) As x , the values of f are getting arbitrarily close to L . The line y = L is a horizontal asymptote of f . (b) As x , the values of f are getting arbitrarily close to M . The line y = M is a horizontal asymptote of f .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask