<< Chapter < Page Chapter >> Page >
  • Describe the linear approximation to a function at a point.
  • Write the linearization of a given function.
  • Draw a graph that illustrates the use of differentials to approximate the change in a quantity.
  • Calculate the relative error and percentage error in using a differential approximation.

We have just seen how derivatives allow us to compare related quantities that are changing over time. In this section, we examine another application of derivatives: the ability to approximate functions locally by linear functions. Linear functions are the easiest functions with which to work, so they provide a useful tool for approximating function values. In addition, the ideas presented in this section are generalized later in the text when we study how to approximate functions by higher-degree polynomials Introduction to Power Series and Functions .

Linear approximation of a function at a point

Consider a function f that is differentiable at a point x = a . Recall that the tangent line to the graph of f at a is given by the equation

y = f ( a ) + f ( a ) ( x a ) .

For example, consider the function f ( x ) = 1 x at a = 2 . Since f is differentiable at x = 2 and f ( x ) = 1 x 2 , we see that f ( 2 ) = 1 4 . Therefore, the tangent line to the graph of f at a = 2 is given by the equation

y = 1 2 1 4 ( x 2 ) .

[link] (a) shows a graph of f ( x ) = 1 x along with the tangent line to f at x = 2 . Note that for x near 2, the graph of the tangent line is close to the graph of f . As a result, we can use the equation of the tangent line to approximate f ( x ) for x near 2. For example, if x = 2.1 , the y value of the corresponding point on the tangent line is

y = 1 2 1 4 ( 2.1 2 ) = 0.475 .

The actual value of f ( 2.1 ) is given by

f ( 2.1 ) = 1 2.1 0.47619 .

Therefore, the tangent line gives us a fairly good approximation of f ( 2.1 ) ( [link] (b)). However, note that for values of x far from 2, the equation of the tangent line does not give us a good approximation. For example, if x = 10 , the y -value of the corresponding point on the tangent line is

y = 1 2 1 4 ( 10 2 ) = 1 2 2 = −1.5 ,

whereas the value of the function at x = 10 is f ( 10 ) = 0.1 .

This figure has two parts a and b. In figure a, the line f(x) = 1/x is shown with its tangent line at x = 2. In figure b, the area near the tangent point is blown up to show how good of an approximation the tangent is near x = 2.
(a) The tangent line to f ( x ) = 1 / x at x = 2 provides a good approximation to f for x near 2. (b) At x = 2.1 , the value of y on the tangent line to f ( x ) = 1 / x is 0.475. The actual value of f ( 2.1 ) is 1 / 2.1 , which is approximately 0.47619.

In general, for a differentiable function f , the equation of the tangent line to f at x = a can be used to approximate f ( x ) for x near a . Therefore, we can write

f ( x ) f ( a ) + f ( a ) ( x a ) for x near a .

We call the linear function

L ( x ) = f ( a ) + f ( a ) ( x a )

the linear approximation    , or tangent line approximation , of f at x = a . This function L is also known as the linearization of f at x = a .

To show how useful the linear approximation can be, we look at how to find the linear approximation for f ( x ) = x at x = 9 .

Linear approximation of x

Find the linear approximation of f ( x ) = x at x = 9 and use the approximation to estimate 9.1 .

Since we are looking for the linear approximation at x = 9 , using [link] we know the linear approximation is given by

L ( x ) = f ( 9 ) + f ( 9 ) ( x 9 ) .

We need to find f ( 9 ) and f ( 9 ) .

f ( x ) = x f ( 9 ) = 9 = 3 f ( x ) = 1 2 x f ( 9 ) = 1 2 9 = 1 6

Therefore, the linear approximation is given by [link] .

L ( x ) = 3 + 1 6 ( x 9 )

Using the linear approximation, we can estimate 9.1 by writing

9.1 = f ( 9.1 ) L ( 9.1 ) = 3 + 1 6 ( 9.1 9 ) 3.0167 .
The function f(x) = the square root of x is shown with its tangent at (9, 3). The tangent appears to be a very good approximation from x = 6 to x = 12.
The local linear approximation to f ( x ) = x at x = 9 provides an approximation to f for x near 9.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask