<< Chapter < Page Chapter >> Page >
  • Describe the linear approximation to a function at a point.
  • Write the linearization of a given function.
  • Draw a graph that illustrates the use of differentials to approximate the change in a quantity.
  • Calculate the relative error and percentage error in using a differential approximation.

We have just seen how derivatives allow us to compare related quantities that are changing over time. In this section, we examine another application of derivatives: the ability to approximate functions locally by linear functions. Linear functions are the easiest functions with which to work, so they provide a useful tool for approximating function values. In addition, the ideas presented in this section are generalized later in the text when we study how to approximate functions by higher-degree polynomials Introduction to Power Series and Functions .

Linear approximation of a function at a point

Consider a function f that is differentiable at a point x = a . Recall that the tangent line to the graph of f at a is given by the equation

y = f ( a ) + f ( a ) ( x a ) .

For example, consider the function f ( x ) = 1 x at a = 2 . Since f is differentiable at x = 2 and f ( x ) = 1 x 2 , we see that f ( 2 ) = 1 4 . Therefore, the tangent line to the graph of f at a = 2 is given by the equation

y = 1 2 1 4 ( x 2 ) .

[link] (a) shows a graph of f ( x ) = 1 x along with the tangent line to f at x = 2 . Note that for x near 2, the graph of the tangent line is close to the graph of f . As a result, we can use the equation of the tangent line to approximate f ( x ) for x near 2. For example, if x = 2.1 , the y value of the corresponding point on the tangent line is

y = 1 2 1 4 ( 2.1 2 ) = 0.475 .

The actual value of f ( 2.1 ) is given by

f ( 2.1 ) = 1 2.1 0.47619 .

Therefore, the tangent line gives us a fairly good approximation of f ( 2.1 ) ( [link] (b)). However, note that for values of x far from 2, the equation of the tangent line does not give us a good approximation. For example, if x = 10 , the y -value of the corresponding point on the tangent line is

y = 1 2 1 4 ( 10 2 ) = 1 2 2 = −1.5 ,

whereas the value of the function at x = 10 is f ( 10 ) = 0.1 .

This figure has two parts a and b. In figure a, the line f(x) = 1/x is shown with its tangent line at x = 2. In figure b, the area near the tangent point is blown up to show how good of an approximation the tangent is near x = 2.
(a) The tangent line to f ( x ) = 1 / x at x = 2 provides a good approximation to f for x near 2. (b) At x = 2.1 , the value of y on the tangent line to f ( x ) = 1 / x is 0.475. The actual value of f ( 2.1 ) is 1 / 2.1 , which is approximately 0.47619.

In general, for a differentiable function f , the equation of the tangent line to f at x = a can be used to approximate f ( x ) for x near a . Therefore, we can write

f ( x ) f ( a ) + f ( a ) ( x a ) for x near a .

We call the linear function

L ( x ) = f ( a ) + f ( a ) ( x a )

the linear approximation    , or tangent line approximation , of f at x = a . This function L is also known as the linearization of f at x = a .

To show how useful the linear approximation can be, we look at how to find the linear approximation for f ( x ) = x at x = 9 .

Linear approximation of x

Find the linear approximation of f ( x ) = x at x = 9 and use the approximation to estimate 9.1 .

Since we are looking for the linear approximation at x = 9 , using [link] we know the linear approximation is given by

L ( x ) = f ( 9 ) + f ( 9 ) ( x 9 ) .

We need to find f ( 9 ) and f ( 9 ) .

f ( x ) = x f ( 9 ) = 9 = 3 f ( x ) = 1 2 x f ( 9 ) = 1 2 9 = 1 6

Therefore, the linear approximation is given by [link] .

L ( x ) = 3 + 1 6 ( x 9 )

Using the linear approximation, we can estimate 9.1 by writing

9.1 = f ( 9.1 ) L ( 9.1 ) = 3 + 1 6 ( 9.1 9 ) 3.0167 .
The function f(x) = the square root of x is shown with its tangent at (9, 3). The tangent appears to be a very good approximation from x = 6 to x = 12.
The local linear approximation to f ( x ) = x at x = 9 provides an approximation to f for x near 9.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask