<< Chapter < Page Chapter >> Page >
  • Calculate the derivative of an inverse function.
  • Recognize the derivatives of the standard inverse trigonometric functions.

In this section we explore the relationship between the derivative of a function and the derivative of its inverse. For functions whose derivatives we already know, we can use this relationship to find derivatives of inverses without having to use the limit definition of the derivative. In particular, we will apply the formula for derivatives of inverse functions to trigonometric functions. This formula may also be used to extend the power rule to rational exponents.

The derivative of an inverse function

We begin by considering a function and its inverse. If f ( x ) is both invertible and differentiable, it seems reasonable that the inverse of f ( x ) is also differentiable. [link] shows the relationship between a function f ( x ) and its inverse f −1 ( x ) . Look at the point ( a , f −1 ( a ) ) on the graph of f −1 ( x ) having a tangent line with a slope of ( f −1 ) ( a ) = p q . This point corresponds to a point ( f −1 ( a ) , a ) on the graph of f ( x ) having a tangent line with a slope of f ( f −1 ( a ) ) = q p . Thus, if f −1 ( x ) is differentiable at a , then it must be the case that

( f −1 ) ( a ) = 1 f ( f −1 ( a ) ) .
This graph shows a function f(x) and its inverse f−1(x). These functions are symmetric about the line y = x. The tangent line of the function f(x) at the point (f−1(a), a) and the tangent line of the function f−1(x) at (a, f−1(a)) are also symmetric about the line y = x. Specifically, if the slope of one were p/q, then the slope of the other would be q/p. Lastly, their derivatives are also symmetric about the line y = x.
The tangent lines of a function and its inverse are related; so, too, are the derivatives of these functions.

We may also derive the formula for the derivative of the inverse by first recalling that x = f ( f −1 ( x ) ) . Then by differentiating both sides of this equation (using the chain rule on the right), we obtain

1 = f ( f −1 ( x ) ) ( f −1 ) ( x ) ) .

Solving for ( f −1 ) ( x ) , we obtain

( f −1 ) ( x ) = 1 f ( f −1 ( x ) ) .

We summarize this result in the following theorem.

Inverse function theorem

Let f ( x ) be a function that is both invertible and differentiable. Let y = f −1 ( x ) be the inverse of f ( x ) . For all x satisfying f ( f −1 ( x ) ) 0 ,

d y d x = d d x ( f −1 ( x ) ) = ( f −1 ) ( x ) = 1 f ( f −1 ( x ) ) .

Alternatively, if y = g ( x ) is the inverse of f ( x ) , then

g ( x ) = 1 f ( g ( x ) ) .

Applying the inverse function theorem

Use the inverse function theorem to find the derivative of g ( x ) = x + 2 x . Compare the resulting derivative to that obtained by differentiating the function directly.

The inverse of g ( x ) = x + 2 x is f ( x ) = 2 x 1 . Since g ( x ) = 1 f ( g ( x ) ) , begin by finding f ( x ) . Thus,

f ( x ) = −2 ( x 1 ) 2 and f ( g ( x ) ) = −2 ( g ( x ) 1 ) 2 = −2 ( x + 2 x 1 ) 2 = x 2 2 .

Finally,

g ( x ) = 1 f ( g ( x ) ) = 2 x 2 .

We can verify that this is the correct derivative by applying the quotient rule to g ( x ) to obtain

g ( x ) = 2 x 2 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use the inverse function theorem to find the derivative of g ( x ) = 1 x + 2 . Compare the result obtained by differentiating g ( x ) directly.

g ( x ) = 1 ( x + 2 ) 2

Got questions? Get instant answers now!

Applying the inverse function theorem

Use the inverse function theorem to find the derivative of g ( x ) = x 3 .

The function g ( x ) = x 3 is the inverse of the function f ( x ) = x 3 . Since g ( x ) = 1 f ( g ( x ) ) , begin by finding f ( x ) . Thus,

f ( x ) = 3 x 3 and f ( g ( x ) ) = 3 ( x 3 ) 2 = 3 x 2 / 3 .

Finally,

g ( x ) = 1 3 x 2 / 3 = 1 3 x −2 / 3 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the derivative of g ( x ) = x 5 by applying the inverse function theorem.

g ( x ) = 1 5 x 4 / 5

Got questions? Get instant answers now!

From the previous example, we see that we can use the inverse function theorem to extend the power rule to exponents of the form 1 n , where n is a positive integer. This extension will ultimately allow us to differentiate x q , where q is any rational number.

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask