<< Chapter < Page Chapter >> Page >
  • Determine a new value of a quantity from the old value and the amount of change.
  • Calculate the average rate of change and explain how it differs from the instantaneous rate of change.
  • Apply rates of change to displacement, velocity, and acceleration of an object moving along a straight line.
  • Predict the future population from the present value and the population growth rate.
  • Use derivatives to calculate marginal cost and revenue in a business situation.

In this section we look at some applications of the derivative by focusing on the interpretation of the derivative as the rate of change of a function. These applications include acceleration    and velocity in physics, population growth rates in biology, and marginal functions in economics.

Amount of change formula

One application for derivatives is to estimate an unknown value of a function at a point by using a known value of a function at some given point together with its rate of change at the given point. If f ( x ) is a function defined on an interval [ a , a + h ] , then the amount of change    of f ( x ) over the interval is the change in the y values of the function over that interval and is given by

f ( a + h ) f ( a ) .

The average rate of change    of the function f over that same interval is the ratio of the amount of change over that interval to the corresponding change in the x values. It is given by

f ( a + h ) f ( a ) h .

As we already know, the instantaneous rate of change of f ( x ) at a is its derivative

f ( a ) = lim h 0 f ( a + h ) f ( a ) h .

For small enough values of h , f ( a ) f ( a + h ) f ( a ) h . We can then solve for f ( a + h ) to get the amount of change formula:

f ( a + h ) f ( a ) + f ( a ) h .

We can use this formula if we know only f ( a ) and f ( a ) and wish to estimate the value of f ( a + h ) . For example, we may use the current population of a city and the rate at which it is growing to estimate its population in the near future. As we can see in [link] , we are approximating f ( a + h ) by the y coordinate at a + h on the line tangent to f ( x ) at x = a . Observe that the accuracy of this estimate depends on the value of h as well as the value of f ( a ) .

On the Cartesian coordinate plane with a and a + h marked on the x axis, the function f is graphed. It passes through (a, f(a)) and (a + h, f(a + h)). A straight line is drawn through (a, f(a)) with its slope being the derivative at that point. This straight line passes through (a + h, f(a) + f’(a)h). There is a line segment connecting (a + h, f(a + h)) and (a + h, f(a) + f’(a)h), and it is marked that this is the error in using f(a) + f’(a)h to estimate f(a + h).
The new value of a changed quantity equals the original value plus the rate of change times the interval of change: f ( a + h ) f ( a ) + f ( a ) h.

Here is an interesting demonstration of rate of change.

Estimating the value of a function

If f ( 3 ) = 2 and f ( 3 ) = 5 , estimate f ( 3.2 ) .

Begin by finding h . We have h = 3.2 3 = 0.2 . Thus,

f ( 3.2 ) = f ( 3 + 0.2 ) f ( 3 ) + ( 0.2 ) f ( 3 ) = 2 + 0.2 ( 5 ) = 3 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Given f ( 10 ) = −5 and f ( 10 ) = 6 , estimate f ( 10.1 ) .

−4.4

Got questions? Get instant answers now!

Motion along a line

Another use for the derivative is to analyze motion along a line. We have described velocity as the rate of change of position. If we take the derivative of the velocity, we can find the acceleration, or the rate of change of velocity. It is also important to introduce the idea of speed    , which is the magnitude of velocity. Thus, we can state the following mathematical definitions.

Definition

Let s ( t ) be a function giving the position of an object at time t .

The velocity of the object at time t is given by v ( t ) = s ( t ) .

The speed of the object at time t is given by | v ( t ) | .

The acceleration of the object at t is given by a ( t ) = v ( t ) = s ( t ) .

Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask