<< Chapter < Page Chapter >> Page >
  • Explain the three conditions for continuity at a point.
  • Describe three kinds of discontinuities.
  • Define continuity on an interval.
  • State the theorem for limits of composite functions.
  • Provide an example of the intermediate value theorem.

Many functions have the property that their graphs can be traced with a pencil without lifting the pencil from the page. Such functions are called continuous . Other functions have points at which a break in the graph occurs, but satisfy this property over intervals contained in their domains. They are continuous on these intervals and are said to have a discontinuity at a point where a break occurs.

We begin our investigation of continuity by exploring what it means for a function to have continuity at a point . Intuitively, a function is continuous at a particular point if there is no break in its graph at that point.

Continuity at a point

Before we look at a formal definition of what it means for a function to be continuous at a point, let’s consider various functions that fail to meet our intuitive notion of what it means to be continuous at a point. We then create a list of conditions that prevent such failures.

Our first function of interest is shown in [link] . We see that the graph of f ( x ) has a hole at a . In fact, f ( a ) is undefined. At the very least, for f ( x ) to be continuous at a , we need the following condition:

i. f ( a ) is defined.
A graph of an increasing linear function f(x) which crosses the x axis from quadrant three to quadrant two and which crosses the y axis from quadrant two to quadrant one. A point a greater than zero is marked on the x axis. The point on the function f(x) above a is an open circle; the function is not defined at a.
The function f ( x ) is not continuous at a because f ( a ) is undefined.

However, as we see in [link] , this condition alone is insufficient to guarantee continuity at the point a . Although f ( a ) is defined, the function has a gap at a . In this example, the gap exists because lim x a f ( x ) does not exist. We must add another condition for continuity at a —namely,

ii. lim x a f ( x ) exists.
The graph of a piecewise function f(x) with two parts. The first part is an increasing linear function that crosses from quadrant three to quadrant one at the origin. A point a greater than zero is marked on the x axis. At fa. on this segment, there is a solid circle. The other segment is also an increasing linear function. It exists in quadrant one for values of x greater than a. At x=a, this segment has an open circle.
The function f ( x ) is not continuous at a because lim x a f ( x ) does not exist.

However, as we see in [link] , these two conditions by themselves do not guarantee continuity at a point. The function in this figure satisfies both of our first two conditions, but is still not continuous at a . We must add a third condition to our list:

iii. lim x a f ( x ) = f ( a ) .
The graph of a piecewise function with two parts. The first part is an increasing linear function that crosses the x axis from quadrant three to quadrant two and which crosses the y axis from quadrant two to quadrant one. A point a greater than zero is marked on the x axis. At this point, there is an open circle on the linear function. The second part is a point at x=a above the line.
The function f ( x ) is not continuous at a because lim x a f ( x ) f ( a ) .

Now we put our list of conditions together and form a definition of continuity at a point.

Definition

A function f ( x ) is continuous at a point a if and only if the following three conditions are satisfied:

  1. f ( a ) is defined
  2. lim x a f ( x ) exists
  3. lim x a f ( x ) = f ( a )

A function is discontinuous at a point a if it fails to be continuous at a .

The following procedure can be used to analyze the continuity of a function at a point using this definition.

Problem-solving strategy: determining continuity at a point

  1. Check to see if f ( a ) is defined. If f ( a ) is undefined, we need go no further. The function is not continuous at a . If f ( a ) is defined, continue to step 2.
  2. Compute lim x a f ( x ) . In some cases, we may need to do this by first computing lim x a f ( x ) and lim x a + f ( x ) . If lim x a f ( x ) does not exist (that is, it is not a real number), then the function is not continuous at a and the problem is solved. If lim x a f ( x ) exists, then continue to step 3.
  3. Compare f ( a ) and lim x a f ( x ) . If lim x a f ( x ) f ( a ) , then the function is not continuous at a . If lim x a f ( x ) = f ( a ) , then the function is continuous at a .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask