<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Summarize the process of photosynthesis
  • Explain the relevance of photosynthesis to other living things
  • Identify the reactants and products of photosynthesis
  • Describe the main structures involved in photosynthesis

All living organisms on earth consist of one or more cells. Each cell runs on the chemical energy found mainly in carbohydrate molecules (food), and the majority of these molecules are produced by one process: photosynthesis. Through photosynthesis, certain organisms convert solar energy (sunlight) into chemical energy, which is then used to build carbohydrate molecules. The energy used to hold these molecules together is released when an organism breaks down food. Cells then use this energy to perform work, such as cellular respiration.

The energy that is harnessed from photosynthesis enters the ecosystems of our planet continuously and is transferred from one organism to another. Therefore, directly or indirectly, the process of photosynthesis provides most of the energy required by living things on earth.

Photosynthesis also results in the release of oxygen into the atmosphere. In short, to eat and breathe, humans depend almost entirely on the organisms that carry out photosynthesis.

Concept in action

Click the following link to learn more about photosynthesis.

Solar dependence and food production

Some organisms can carry out photosynthesis, whereas others cannot. An autotroph    is an organism that can produce its own food. The Greek roots of the word autotroph mean “self” ( auto ) “feeder” ( troph ). Plants are the best-known autotrophs, but others exist, including certain types of bacteria and algae ( [link] ). Oceanic algae contribute enormous quantities of food and oxygen to global food chains. Plants are also photoautotrophs , a type of autotroph that uses sunlight and carbon from carbon dioxide to synthesize chemical energy in the form of carbohydrates. All organisms carrying out photosynthesis require sunlight.

Photo a shows a green fern leaf. Photo b shows a pier protruding into a large body of still water; the water near the pier is colored green with visible algae. Photo c is a micrograph of cyanobacteria.
(a) Plants, (b) algae, and (c) certain bacteria, called cyanobacteria, are photoautotrophs that can carry out photosynthesis. Algae can grow over enormous areas in water, at times completely covering the surface. (credit a: Steve Hillebrand, U.S. Fish and Wildlife Service; credit b: "eutrophication&hypoxia"/Flickr; credit c: NASA; scale-bar data from Matt Russell)

Heterotrophs are organisms incapable of photosynthesis that must therefore obtain energy and carbon from food by consuming other organisms. The Greek roots of the word heterotroph mean “other” ( hetero ) “feeder” ( troph ), meaning that their food comes from other organisms. Even if the food organism is another animal, this food traces its origins back to autotrophs and the process of photosynthesis. Humans are heterotrophs, as are all animals. Heterotrophs depend on autotrophs, either directly or indirectly. Deer and wolves are heterotrophs. A deer obtains energy by eating plants. A wolf eating a deer obtains energy that originally came from the plants eaten by that deer. The energy in the plant came from photosynthesis, and therefore it is the only autotroph in this example ( [link] ). Using this reasoning, all food eaten by humans also links back to autotrophs that carry out photosynthesis.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11487/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of biology' conversation and receive update notifications?

Ask