<< Chapter < Page Chapter >> Page >

Animals in class Gastropoda (“stomach foot”) include well-known mollusks like snails, slugs, conchs, sea hares, and sea butterflies. Gastropoda includes shell-bearing species as well as species with a reduced shell. These animals are asymmetrical and usually present a coiled shell ( [link] ). Shells may be planospiral    (like a garden hose wound up), commonly seen in garden snails, or conispiral    , (like a spiral staircase), commonly seen in marine conches.

The photo on the left shows a land snail with a coiled shell and long tentacles. The photo on the right shows a slug, which looks like a snail without a shell.
(a) Snails and (b) slugs are both gastropods, but slugs lack a shell. (credit a: modification of work by Murray Stevenson; credit b: modification of work by Rosendahl)

The visceral mass in the shelled species displays torsion around the perpendicular axis on the center of the foot, which is the key characteristic of this group, along with a foot that is modified for crawling ( [link] ). Most gastropods bear a head with tentacles, eyes, and a style. A complex radula is used by the digestive system and aids in the ingestion of food. Eyes may be absent in some gastropods species. The mantle cavity encloses the ctenidia as well as a pair of nephridia.

Illustration A shows a side view of a snail. The digestive system starts at the mouth, and continues to the stomach toward the back of the shell. The stomach empties into the intestines, which continue forward along the upper inside edge of the shell and end a cavity above the mouth. Illustration B shows a top view of a snail. From the mouth, the digestive tract curves toward the left, then hooks around to the right and goes back toward the front of the animal.
During embryonic development of gastropods, the visceral mass undergoes torsion, or counterclockwise rotation of anatomical features. As a result, the anus of the adult animal is located over the head. Torsion is an independent process from coiling of the shell.

Everyday connection

Can snail venom be used as a pharmacological painkiller?

Marine snails of the genus Conus ( [link] ) attack prey with a venomous sting. The toxin released, known as conotoxin, is a peptide with internal disulfide linkages. Conotoxins can bring about paralysis in humans, indicating that this toxin attacks neurological targets. Some conotoxins have been shown to block neuronal ion channels. These findings have led researchers to study conotoxins for possible medical applications.

Conotoxins are an exciting area of potential pharmacological development, since these peptides may be possibly modified and used in specific medical conditions to inhibit the activity of specific neurons. For example, these toxins may be used to induce paralysis in muscles in specific health applications, similar to the use of botulinum toxin. Since the entire spectrum of conotoxins, as well as their mechanisms of action, are not completely known, the study of their potential applications is still in its infancy. Most research to date has focused on their use to treat neurological diseases. They have also shown some efficacy in relieving chronic pain, and the pain associated with conditions like sciatica and shingles. The study and use of biotoxins—toxins derived from living organisms—are an excellent example of the application of biological science to modern medicine.

The photo shows Conus on the sea floor. The shape of the shell resembles that of a pasta shell. A snout sticks out the front end.
Members of the genus Conus produce neurotoxins that may one day have medical uses. (credit: David Burdick, NOAA)

Class Cephalopoda (“head foot” animals), include octopi, squids, cuttlefish, and nautilus. Cephalopods are a class of shell-bearing animals as well as mollusks with a reduced shell. They display vivid coloration, typically seen in squids and octopi, which is used for camouflage. All animals in this class are carnivorous predators and have beak-like jaws at the anterior end. All cephalopods show the presence of a very well-developed nervous system along with eyes, as well as a closed circulatory system. The foot is lobed and developed into tentacles, and a funnel, which is used as their mode of locomotion. Suckers are present on the tentacles in octopi and squid. Ctenidia are enclosed in a large mantle cavity and are serviced by large blood vessels, each with its own heart associated with it; the mantle has siphonophores that facilitate exchange of water.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask