<< Chapter < Page Chapter >> Page >

Helioseismology: http://solar-center.stanford.edu/about/helioseismology.html.

Princeton Plasma Physics Lab: http://www.pppl.gov/.

Solving the Mystery of the Solar Neutrinos: http://www.nobelprize.org/nobel_prizes/themes/physics/bahcall/.

Super Kamiokande Neutrino Mass Page: http://www.ps.uci.edu/~superk/.

Videos

Deep Secrets of the Neutrino: Physics Underground: https://www.youtube.com/watch?v=Ar9ydagYkYg. 2010 Public Lecture by Peter Rowson at the Stanford Linear Accelerator Center (1:22:00).

The Elusive Neutrino and the Nature of Physics: https://www.youtube.com/watch?v=CBfUHzkcaHQ. Panel at the 2014 World Science Festival (1:30:00).

The Ghost Particle: http://www.dailymotion.com/video/x20rn7s_nova-the-ghost-particle-discovery-science-universe-documentary_tv. 2006 NOVA episode (52:49).

Collaborative group activities

  1. In this chapter, we learned that meteorites falling into the Sun could not be the source of the Sun’s energy because the necessary increase in the mass of the Sun would lengthen Earth’s orbital period by 2 seconds per year. Have your group discuss what effects this would cause for our planet and for us as the centuries went on.
  2. Solar astronomers can learn more about the Sun’s interior if they can observe the Sun’s oscillations 24 hours each day. This means that they cannot have their observations interrupted by the day/night cycle. Such an experiment, called the GONG (Global Oscillation Network Group) project, was first set up in the 1990s. To save money, this experiment was designed to make use of the minimum possible number of telescopes. It turns out that if the sites are selected carefully, the Sun can be observed all but about 10% of the time with only six observing stations. What factors do you think have to be taken into consideration in selecting the observing sites? Can your group suggest six general geographic locations that would optimize the amount of time that the Sun can be observed? Check your answer by looking at the GONG website.
  3. What would it be like if we actually manage to get controlled fusion on Earth to be economically feasible? If the hydrogen in water becomes the fuel for releasing enormous amounts of energy (instead of fossil fuels), have your group discuss how this affects the world economy and international politics. (Think of the role that oil and natural gas deposits now play on the world scene and in international politics.)
  4. Your group is a delegation sent to the city council of a small mining town to explain why the government is putting a swimming-pool-sized vat of commercial cleaning fluid down one of the shafts of an old gold mine. How would you approach this meeting? Assuming that the members of the city council do not have much science background, how would you explain the importance of the project to them? Suggest some visual aids you could use.
  5. When Raymond Davis first suggested his experiment in the underground gold mine, which had significant costs associated with it, some people said it wasn’t worth the expense since we already understood the conditions and reactions in the core of the Sun. Yet his experiment led to a major change in our understanding of neutrinos and the physics of subatomic particles. Can your group think of other “expensive” experiments in astronomy that led to fundamental improvements in our understanding of nature?

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask