<< Chapter < Page Chapter >> Page >

The different classes of asteroids are found at different distances from the Sun ( [link] ). By tracing how asteroid compositions vary with distance from the Sun, we can reconstruct some of the properties of the solar nebula from which they originally formed.

Where different types of asteroids are found.

Types of Asteroids and their Locations. In this plot the vertical axis is labeled “Percent of Total”, and ranges from zero at bottom to 100 at the top in increments of 10. The horizontal axis is labeled “Distance from Sun (AU)”, and ranges from 1 at left to 5 on the right, in increments of 1 AU. The “M-type (metallic)” bodies are represented with a dashed black curve beginning around zero percent at 1.9 AU, peaking at about 20% at 2.5 AU, and ending around zero percent at 3.5 AU. The “S-type (stony or silicaceous)” asteroids are shown as a solid red curve beginning at about 20% at 1.3 AU, rising to 70% at 2.3 AU and falling to near zero percent at 4 AU. Finally, the “C-type (carbonaceous)” asteroids are shown with a solid red curve beginning near 20% at 1.6 AU, rising to 90% at 3.3 AU and falling to about 20% at 5 AU.
Asteroids of different composition are distributed at different distances from the Sun. The S-type and C-type are both primitive; the M-type consists of cores of differentiated parent bodies.

Vesta: a differentiated asteroid

Vesta is one of the most interesting of the asteroids. It orbits the Sun with a semi-major axis of 2.4 AU in the inner part of the asteroid belt. Its relatively high reflectivity of almost 30% makes it the brightest asteroid, so bright that it is actually visible to the unaided eye if you know just where to look. But its real claim to fame is that its surface is covered with basalt, indicating that Vesta is a differentiated object that must once have been volcanically active, in spite of its small size (about 500 kilometers in diameter).

Meteorites from Vesta’s surface ( [link] ), identified by comparing their spectra with that of Vesta itself, have landed on Earth and are available for direct study in the laboratory. We thus know a great deal about this asteroid. The age of the lava flows from which these meteorites derived has been measured at 4.4 to 4.5 billion years, very soon after the formation of the solar system. This age is consistent with what we might expect for volcanoes on Vesta; whatever process heated such a small object was probably intense and short-lived. In 2016, a meteorite fell in Turkey that could be identified with a particular lava flow as revealed by the orbiting Dawn spacecraft.

Piece of vesta.

Photograph of a Piece of Vesta. This photo shows an irregularly shaped metallic fragment from Vesta. The scale at lower right reads “5 cm/2 in.” and is about half the width of the object.
This meteorite (rock that fell from space) has been identified as a volcanic fragment from the crust of asteroid Vesta . (credit: modification of work by R. Kempton (New England Meteoritical Services))

Asteroids up close

On the way to its 1995 encounter with Jupiter, the Galileo spacecraft was targeted to fly close to two main-belt S-type asteroids called Gaspra and Ida . The Galileo camera revealed both as long and highly irregular (resembling a battered potato), as befits fragments from a catastrophic collision ( [link] ).

Mathilde, gaspra, and ida.

Mathilde, Gaspra, and Ida. The largest, Mathilde, is shown at left. Next, Gaspra, the smallest of the three is at center and Ida is seen at right. All are non-spherical, heavily cratered objects.
The first three asteroids photographed from spacecraft flybys, printed to the same scale. Gaspra and Ida are S-type and were investigated by the Galileo spacecraft; Mathilde is C-type and was a flyby target for the NEAR-Shoemaker spacecraft. (credit: modification of work by NEAR Project, Galileo Project, NASA)

The detailed images allowed us to count the craters on Gaspra and Ida, and to estimate the length of time their surfaces have been exposed to collisions. The Galileo scientists concluded that these asteroids are only about 200 million years old (that is, the collisions that formed them took place about 200 million years ago). Calculations suggest that an asteroid the size of Gaspra or Ida can expect another catastrophic collision sometime in the next billion years, at which time it will be disrupted to form another generation of still-smaller fragments.

Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask