<< Chapter < Page | Chapter >> Page > |
By the end of this section, you will be able to:
In addition to their moons, all four of the giant planets have rings, with each ring system consisting of billions of small particles or “moonlets” orbiting close to their planet. Each of these rings displays a complicated structure that is related to interactions between the ring particles and the larger moons. However, the four ring systems are very different from each other in mass, structure, and composition, as outlined in [link] .
Properties of the Ring Systems | ||||
---|---|---|---|---|
Planet | Outer Radius
(km) |
Outer Radius
( R planet ) |
Mass
(kg) |
Reflectivity
(%) |
Jupiter | 128,000 | 1.8 | 10 10 (?) | ? |
Saturn | 140,000 | 2.3 | 10 19 | 60 |
Uranus | 51,000 | 2.2 | 10 14 | 5 |
Neptune | 63,000 | 2.5 | 10 12 | 5 |
Saturn’s large ring system is made up of icy particles spread out into several vast, flat rings containing a great deal of fine structure. The Uranus and Neptune ring systems, on the other hand, are nearly the reverse of Saturn’s: they consist of dark particles confined to a few narrow rings with broad empty gaps in between. Jupiter’s ring and at least one of Saturn’s are merely transient dust bands, constantly renewed by dust grains eroded from small moons. In this section, we focus on the two most massive ring systems, those of Saturn and Uranus.
A ring is a collection of vast numbers of particles, each like a tiny moon obeying Kepler’s laws as it follows its own orbit around the planet. Thus, the inner particles revolve faster than those farther out, and the ring as a whole does not rotate as a solid body. In fact, it is better not to think of a ring rotating at all, but rather to consider the revolution (or motion in orbit) of its individual moonlets.
If the ring particles were widely spaced, they would move independently, like separate moonlets. However, in the main rings of Saturn and Uranus the particles are close enough to exert mutual gravitational influence, and occasionally even to rub together or bounce off each other in low-speed collisions. Because of these interactions, we see phenomena such as waves that move across the rings—just the way water waves move over the surface of the ocean.
There are two basic ideas of how such rings come to be. First is the breakup hypothesis , which suggests that the rings are the remains of a shattered moon. A passing comet or asteroid might have collided with the moon, breaking it into pieces. Tidal forces then pulled the fragments apart, and they dispersed into a disk. The second hypothesis, which takes the reverse perspective, suggests that the rings are made of particles that were unable to come together to form a moon in the first place.
In either theory, the gravity of the planet plays an important role. Close to the planet (see [link] ), tidal forces can tear bodies apart or inhibit loose particles from coming together. We do not know which explanation holds for any given ring, although many scientists have concluded that at least a few of the rings are relatively young and must therefore be the result of breakup.
Notification Switch
Would you like to follow the 'Astronomy' conversation and receive update notifications?