<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Describe what causes lunar and solar eclipses
  • Differentiate between a total and partial solar eclipse
  • Explain why lunar eclipses are much more common than solar eclipses

One of the coincidences of living on Earth at the present time is that the two most prominent astronomical objects, the Sun and the Moon , have nearly the same apparent size in the sky. Although the Sun is about 400 times larger in diameter than the Moon, it is also about 400 times farther away, so both the Sun and the Moon have the same angular size—about 1/2°. As a result, the Moon, as seen from Earth, can appear to cover the Sun, producing one of the most impressive events in nature.

Any solid object in the solar system casts a shadow by blocking the light of the Sun from a region behind it. This shadow in space becomes apparent whenever another object moves into it. In general, an eclipse occurs whenever any part of either Earth or the Moon enters the shadow of the other. When the Moon’s shadow strikes Earth, people within that shadow see the Sun at least partially covered by the Moon; that is, they witness a solar eclipse    . When the Moon passes into the shadow of Earth, people on the night side of Earth see the Moon darken in what is called a lunar eclipse    . Let’s look at how these happen in more detail.

The shadows of Earth and the Moon consist of two parts: a cone where the shadow is darkest, called the umbra , and a lighter, more diffuse region of darkness called the penumbra . As you can imagine, the most spectacular eclipses occur when an object enters the umbra. [link] illustrates the appearance of the Moon’s shadow and what the Sun and Moon would look like from different points within the shadow.

Solar eclipse.

Solar Eclipse. In panel (a), at top, the geometry of a solar eclipse is drawn as seen from above. At left the Sun is drawn as a large yellow disc. At center, a hypothetical spherical body is drawn as a blue disc. The shadow cast by this body is indicated by two yellow arrows which are drawn from the top of the Sun’s disk to the blue body; one touches the top of the body and continues to the right and one touches the bottom and continues to the right. To complete the shadow, two yellow arrows are drawn from the bottom of the Sun’s disk to the blue body; one touches the bottom of the blue disc and continues to the right and one touches the top and continues to the right. Beyond the blue disc on the right side of the diagram, four areas within the shadow are indicated with numbers corresponding to the images in panel (b). At position 1, closest to the blue disc, the eclipse is total. At positions 2 and 3 the eclipses are partial. At position 4, furthest from the blue disc, the eclipse is annular.
(a) The shadow cast by a spherical body (the Moon, for example) is shown. Notice the dark umbra and the lighter penumbra. Four points in the shadow are labeled with numbers. In (b) you see what the Sun and Moon would look like in the sky at the four labeled points. At position 1, you see a total eclipse. At positions 2 and 3, the eclipse is partial. At position 4, the Moon is farther away and thus cannot cover the Sun completely; a ring of light thus shows around the Sun, creating what is called an “annular” eclipse.

If the path of the Moon in the sky were identical to the path of the Sun (the ecliptic), we might expect to see an eclipse of the Sun and the Moon each month—whenever the Moon got in front of the Sun or into the shadow of Earth. However, as we mentioned, the Moon’s orbit is tilted relative to the plane of Earth’s orbit about the Sun by about 5° (imagine two hula hoops with a common center, but tilted a bit). As a result, during most months, the Moon is sufficiently above or below the ecliptic plane to avoid an eclipse. But when the two paths cross (twice a year), it is then “eclipse season” and eclipses are possible.

Eclipses of the sun

The apparent or angular sizes of both the Sun and Moon vary slightly from time to time as their distances from Earth vary. ( [link] shows the distance of the observer varying at points A–D, but the idea is the same.) Much of the time, the Moon looks slightly smaller than the Sun and cannot cover it completely, even if the two are perfectly aligned. In this type of “annular eclipse,” there is a ring of light around the dark sphere of the Moon.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask