<< Chapter < Page Chapter >> Page >

Lifetimes on the main sequence

How many years a star remains in the main-sequence band depends on its mass. You might think that a more massive star, having more fuel, would last longer, but it’s not that simple. The lifetime of a star in a particular stage of evolution depends on how much nuclear fuel it has and on how quickly it uses up that fuel. (In the same way, how long people can keep spending money depends not only on how much money they have but also on how quickly they spend it. This is why many lottery winners who go on spending sprees quickly wind up poor again.) In the case of stars, more massive ones use up their fuel much more quickly than stars of low mass.

The reason massive stars are such spendthrifts is that, as we saw above, the rate of fusion depends very strongly on the star’s core temperature. And what determines how hot a star’s central regions get? It is the mass of the star—the weight of the overlying layers determines how high the pressure in the core must be: higher mass requires higher pressure to balance it. Higher pressure, in turn, is produced by higher temperature. The higher the temperature in the central regions, the faster the star races through its storehouse of central hydrogen. Although massive stars have more fuel, they burn it so prodigiously that their lifetimes are much shorter than those of their low-mass counterparts. You can also understand now why the most massive main-sequence stars are also the most luminous. Like new rock stars with their first platinum album, they spend their resources at an astounding rate.

The main-sequence lifetimes of stars of different masses are listed in [link] . This table shows that the most massive stars spend only a few million years on the main sequence. A star of 1 solar mass remains there for roughly 10 billion years, while a star of about 0.4 solar mass has a main-sequence lifetime of some 200 billion years, which is longer than the current age of the universe. (Bear in mind, however, that every star spends most of its total lifetime on the main sequence    . Stars devote an average of 90% of their lives to peacefully fusing hydrogen into helium.)

Lifetimes of Main-Sequence Stars
Spectral Type Surface Temperature (K) Mass
(Mass of Sun = 1)
Lifetime on Main Sequence (years)
O5 54,000 40 1 million
B0 29,200 16 10 million
A0 9600 3.3 500 million
F0 7350 1.7 2.7 billion
G0 6050 1.1 9 billion
K0 5240 0.8 14 billion
M0 3750 0.4 200 billion

These results are not merely of academic interest. Human beings developed on a planet around a G-type star. This means that the Sun’s stable main-sequence lifetime is so long that it afforded life on Earth plenty of time to evolve. When searching for intelligent life like our own on planets around other stars, it would be a pretty big waste of time to search around O- or B-type stars. These stars remain stable for such a short time that the development of creatures complicated enough to take astronomy courses is very unlikely.

From main-sequence star to red giant

Eventually, all the hydrogen in a star’s core, where it is hot enough for fusion reactions, is used up. The core then contains only helium, “contaminated” by whatever small percentage of heavier elements the star had to begin with. The helium in the core can be thought of as the accumulated “ash” from the nuclear “burning” of hydrogen during the main-sequence stage.

Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask