<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Explain the difference between the solar day and the sidereal day
  • Explain mean solar time and the reason for time zones

The measurement of time is based on the rotation of Earth. Throughout most of human history, time has been reckoned by positions of the Sun and stars in the sky. Only recently have mechanical and electronic clocks taken over this function in regulating our lives.

The length of the day

The most fundamental astronomical unit of time is the day, measured in terms of the rotation of Earth. There is, however, more than one way to define the day. Usually, we think of it as the rotation period of Earth with respect to the Sun, called the solar day    . After all, for most people sunrise is more important than the rising time of Arcturus or some other star, so we set our clocks to some version of Sun-time. However, astronomers also use a sidereal day    , which is defined in terms of the rotation period of Earth with respect to the stars.

A solar day is slightly longer than a sidereal day because (as you can see from [link] ) Earth not only turns but also moves along its path around the Sun in a day. Suppose we start when Earth’s orbital position is at day 1, with both the Sun and some distant star (located in the direction indicated by the long white arrow pointing left), directly in line with the zenith for the observer on Earth. When Earth has completed one rotation with respect to the distant star and is at day 2, the long arrow again points to the same distant star. However, notice that because of the movement of Earth along its orbit from day 1 to 2, the Sun has not yet reached a position above the observer. To complete a solar day, Earth must rotate an additional amount, equal to 1/365 of a full turn. The time required for this extra rotation is 1/365 of a day, or about 4 minutes. So the solar day is about 4 minutes longer than the sidereal day.

Difference between a sidereal day and a solar day.

Illustration of Sidereal Time. The Sun is drawn at left as a yellow disc and the Earth is drawn at two positions at far right. The upper position labeled “Earth, day 1” shows an observer looking up at the Sun, whose line of sight indicated by a white arrow connecting the Earth to the Sun. A short curved arrow pointing clockwise is drawn from the observer’s line of sight to indicate the direction of Earth’s rotation. The lower position labeled “Earth, day 2” shows the observer looking up again one day later. (The clockwise arrow is now drawn circling the Earth.) Due to the motion of Earth along its orbit, the observer’s line of sight no longer points to the Sun but now points “To remote point on celestial sphere”. A dashed line connects the observers position on day 2 to the Sun as seen on day 1. The angle between the new line of sight and the previous line of sight to the Sun is labeled “1°”.
This is a top view, looking down as Earth orbits the Sun. Because Earth moves around the Sun (roughly 1° per day), after one complete rotation of Earth relative to the stars, we do not see the Sun in the same position.

Because our ordinary clocks are set to solar time, stars rise 4 minutes earlier each day. Astronomers prefer sidereal time for planning their observations because in that system, a star rises at the same time every day.

Sidereal time and solar time

The Sun makes a complete circle in the sky approximately every 24 hours, while the stars make a complete circle in the sky in 4 minutes less time, or 23 hours and 56 minutes. This causes the positions of the stars at a given time of day or night to change slightly each day. Since stars rise 4 minutes earlier each day, that works out to about 2 hours per month (4 minutes × 30 = 120 minutes or 2 hours). So, if a particular constellation rises at sunset during the winter, you can be sure that by the summer, it will rise about 12 hours earlier, with the sunrise, and it will not be so easily visible in the night sky. Let’s say that tonight the bright star Sirius rises at 7:00 p.m. from a given location so that by midnight, it is very high in the sky. At what time will Sirius rise in three months?

Solution

In three months’ time, Sirius will be rising earlier by:

90 days × 4 minutes day = 360 minutes or 6 hours

It will rise at about 1:00 p.m. and be high in the sky at around sunset instead of midnight. Sirius is the brightest star in the constellation of Canis Major (the big dog). So, some other constellation will be prominently visible high in the sky at this later date.

Check your learning

If a star rises at 8:30 p.m. tonight, approximately what time will it rise two months from now?

Answer:

In two months, the star will rise:
60 days × 4 minutes day = 24 0 minutes or 4 hours earlier.
This means it will rise at 4:30 p.m.

Got questions? Get instant answers now!
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask