<< Chapter < Page | Chapter >> Page > |
Now we see the importance of the term L, the lifetime of a communicating civilization (measured in years). We have had this capability (to communicate at the distances of the stars) for only a few decades.
With our optimistic assumptions about the other factors,
L = 100 years and
N = 100 such civilizations in the entire Galaxy. In that case, there are so few other civilizations like ours that we are unlikely to detect any signals in a SETI search. But suppose the average lifetime is a million years; in that case, there are a million such civilizations in the Galaxy, and some of them may be within range for radio communication.
The most important conclusion from this calculation is that even if we are extremely optimistic about the probabilities, the only way we can expect success from SETI is if other civilizations are much older (and hence probably much more advanced) than ours.
Read Frank Drake’s own account of how he came up with his “equation.” And here is a recent interview with Frank Drake by one of the authors of this textbook.
For the reasons discussed above, most SETI programs search for signals at radio wavelengths. But in science, if there are other approaches to answering an unsolved question, we don’t want to neglect them. So astronomers have been thinking about other ways we could pick up evidence for the existence of technologically advanced civilizations.
Recently, technology has allowed astronomers to expand the search into the domain of visible light. You might think that it would be hopeless to try to detect a flash of visible light from a planet given the brilliance of the star it orbits. This is why we usually cannot measure the reflected light of planets around other stars. The feeble light of the planet is simply swamped by the “big light” in the neighborhood. So another civilization would need a mighty strong beacon to compete with their star.
However, in recent years, human engineers have learned how to make flashes of light brighter than the Sun. The trick is to “turn on” the light for a very brief time, so that the costs are manageable. But ultra-bright, ultra-short laser pulses (operating for periods of a billionth of a second) can pack a lot of energy and can be coded to carry a message. We also have the technology to detect such short pulses—not with human senses, but with special detectors that can be “tuned” to hunt automatically for such short bursts of light from nearby stars.
Why would any civilization try to outshine its own star in this way? It turns out that the cost of sending an ultra-short laser pulse in the direction of a few promising stars can be less than the cost of sweeping a continuous radio message across the whole sky. Or perhaps they, too, have a special fondness for light messages because one of their senses evolved using light. Several programs are now experimenting with “ optical SETI ” searches, which can be done with only a modest telescope. (The term optical here means using visible light.)
Notification Switch
Would you like to follow the 'Astronomy' conversation and receive update notifications?