<< Chapter < Page | Chapter >> Page > |
In GUT models, the forces that we are familiar with here on Earth, including gravity and electromagnetism, behaved very differently in the extreme conditions of the early universe than they do today. In physical science, the term force is used to describe anything that can change the motion of a particle or body. One of the remarkable discoveries of modern science is that all known physical processes can be described through the action of just four forces: gravity, electromagnetism, the strong nuclear force, and the weak nuclear force ( [link] ).
The Forces of Nature | |||
---|---|---|---|
Force | Relative Strength Today | Range of Action | Important Applications |
Gravity | 1 | Whole universe | Motions of planets, stars, galaxies |
Electromagnetism | 10 36 | Whole universe | Atoms, molecules, electricity, magnetic fields |
Weak nuclear force | 10 33 | 10 –17 meters | Radioactive decay |
Strong nuclear force | 10 38 | 10 –15 meters | The existence of atomic nuclei |
Gravity is perhaps the most familiar force, and certainly appears strong if you jump off a tall building. However, the force of gravity between two elementary particles—say two protons—is by far the weakest of the four forces. Electromagnetism—which includes both magnetic and electrical forces, holds atoms together, and produces the electromagnetic radiation that we use to study the universe—is much stronger, as you can see in [link] . The weak nuclear force is only weak in comparison to its strong “cousin,” but it is in fact much stronger than gravity.
Both the weak and strong nuclear forces differ from the first two forces in that they act only over very small distances—those comparable to the size of an atomic nucleus or less. The weak force is involved in radioactive decay and in reactions that result in the production of neutrinos. The strong force holds protons and neutrons together in an atomic nucleus.
Physicists have wondered why there are four forces in the universe—why not 300 or, preferably, just one? An important hint comes from the name electromagnetic force . For a long time, scientists thought that the forces of electricity and magnetism were separate, but James Clerk Maxwell (see the chapter on Radiation and Spectra ) was able to unify these forces—to show that they are aspects of the same phenomenon. In the same way, many scientists (including Einstein) have wondered if the four forces we now know could also be unified. Physicists have actually developed GUTs that unify three of the four forces (but not gravity).
In these theories, the strong, weak, and electromagnetic forces are not three independent forces but instead are different manifestations or aspects of what is, in fact, a single force. The theories predict that at high enough temperatures, there would be only one force. At lower temperatures (like the ones in the universe today), however, this single force has changed into three different forces ( [link] ). Just as different gases or liquids freeze at different temperatures, we can say that the different forces “froze out” of the unified force at different temperatures. Unfortunately, the temperatures at which the three forces acted as one force are so high that they cannot be reached in any laboratory on Earth. Only the early universe, at times prior to 10 –35 second, was hot enough to unify these forces.
Notification Switch
Would you like to follow the 'Astronomy' conversation and receive update notifications?