<< Chapter < Page | Chapter >> Page > |
By the end of this section, you will be able to:
Let’s now use the results about the expansion of the universe to look at how these ideas might be applied to develop a model for the evolution of the universe as a whole. With this model, astronomers can make predictions about how the universe has evolved so far and what will happen to it in the future.
Every model of the universe must include the expansion we observe. Another key element of the models is that the cosmological principle (which we discussed in The Evolution and Distribution of Galaxies ) is valid: on the large scale, the universe at any given time is the same everywhere (homogeneous and isotropic). As a result, the expansion rate must be the same everywhere during any epoch of cosmic time. If so, we don’t need to think about the entire universe when we think about the expansion, we can just look at any sufficiently large portion of it. (Some models for dark energy would allow the expansion rate to be different in different directions, and scientists are designing experiments to test this idea. However, until such evidence is found, we will assume that the cosmological principle applies throughout the universe.)
In Galaxies , we hinted that when we think of the expansion of the universe, it is more correct to think of space itself stretching rather than of galaxies moving through static space. Nevertheless, we have since been discussing the redshifts of galaxies as if they resulted from the motion of the galaxies themselves.
Now, however, it is time to finally put such simplistic notions behind us and take a more sophisticated look at the cosmic expansion. Recall from our discussion of Einstein’s theory of general relativity (in the chapter on Black Holes and Curved Spacetime ) that space—or, more precisely, spacetime—is not a mere backdrop to the action of the universe, as Newton thought. Rather, it is an active participant—affected by and in turn affecting the matter and energy in the universe.
Since the expansion of the universe is the stretching of all spacetime, all points in the universe are stretching together. Thus, the expansion began everywhere at once . Unfortunately for tourist agencies of the future, there is no location you can visit where the stretching of space began or where we can say that the Big Bang happened.
To describe just how space stretches, we say the cosmic expansion causes the universe to undergo a uniform change in scale over time. By scale we mean, for example, the distance between two clusters of galaxies. It is customary to represent the scale by the factor R ; if R doubles, then the distance between the clusters has doubled. Since the universe is expanding at the same rate everywhere, the change in R tells us how much it has expanded (or contracted) at any given time. For a static universe, R would be constant as time passes. In an expanding universe, R increases with time.
Notification Switch
Would you like to follow the 'Astronomy' conversation and receive update notifications?