<< Chapter < Page Chapter >> Page >

Hubble’s law.

Hubble’s Law. The plot in panel (a), at left, is labeled “Hubble’s Data (1929)” and has the vertical axis labeled “Velocity (km/s)”, running from -500 at bottom to 1500 at top in increments of 500 km/s. The horizontal axis is labeled “Distance (millions of LY)”, and runs from zero at left to 6 at right in increments of 3 million light years. The data is plotted as red dots, with the mean drawn as a red line beginning at 0 LY, 0 km/s at lower left to 6 MLY, 1000 km/s at upper right. The plot in panel (b), at right, is labeled “Hubble and Humason (1931)” and has the vertical axis labeled “Velocity (km/s)”, running from zero at bottom to 20,000 at top in increments of 5,000 km/s. The horizontal axis is labeled “Distance (millions of LY)”, and runs from zero at left to 120 at right in increments of 30 million LY. The data is plotted as black dots, with the mean drawn as a black line beginning at 0 LY, 0 km/s at lower left to 100 MLY, 19,000 km/s at upper right. The data from panel (a) are plotted in red at lower left.
(a) These data show Hubble’s original velocity-distance relation, adapted from his 1929 paper in the Proceedings of the National Academy of Sciences . (b) These data show Hubble and Humason’s velocity-distance relation, adapted from their 1931 paper in The Astrophysical Journal . The red dots at the lower left are the points in the diagram in the 1929 paper. Comparison of the two graphs shows how rapidly the determination of galactic distances and redshifts progressed in the 2 years between these publications.

We now know that this relationship holds for every galaxy except a few of the nearest ones. Nearly all of the galaxies that are approaching us turn out to be part of the Milky Way’s own group of galaxies, which have their own individual motions, just as birds flying in a group may fly in slightly different directions at slightly different speeds even though the entire flock travels through space together.

Written as a formula, the relationship between velocity and distance is

V = H × d

where v is the recession speed, d is the distance, and H is a number called the Hubble constant    . This equation is now known as Hubble’s law    .

Constants of proportionality

Mathematical relationships such as Hubble’s law are pretty common in life. To take a simple example, suppose your college or university hires you to call rich alumni and ask for donations. You are paid $2.50 for each call; the more calls you can squeeze in between studying astronomy and other courses, the more money you take home. We can set up a formula that connects p , your pay, and n , the number of calls

p = A × n

where A is the alumni constant, with a value of $2.50. If you make 20 calls, you will earn $2.50 times 20, or $50.

Suppose your boss forgets to tell you what you will get paid for each call. You can calculate the alumni constant that governs your pay by keeping track of how many calls you make and noting your gross pay each week. If you make 100 calls the first week and are paid $250, you can deduce that the constant is $2.50 (in units of dollars per call). Hubble, of course, had no “boss” to tell him what his constant would be—he had to calculate its value from the measurements of distance and velocity.

Astronomers express the value of Hubble’s constant in units that relate to how they measure speed and velocity for galaxies. In this book, we will use kilometers per second per million light-years as that unit. For many years, estimates of the value of the Hubble constant have been in the range of 15 to 30 kilometers per second per million light-years The most recent work appears to be converging on a value near 22 kilometers per second per million light-years If H is 22 kilometers per second per million light-years, a galaxy moves away from us at a speed of 22 kilometers per second for every million light-years of its distance. As an example, a galaxy 100 million light-years away is moving away from us at a speed of 2200 kilometers per second.

Hubble’s law tells us something fundamental about the universe. Since all but the nearest galaxies appear to be in motion away from us, with the most distant ones moving the fastest, we must be living in an expanding universe. We will explore the implications of this idea shortly, as well as in the final chapters of this text. For now, we will just say that Hubble’s observation underlies all our theories about the origin and evolution of the universe.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask