<< Chapter < Page Chapter >> Page >

Each of the LIGO stations consists of two 4-kilometer-long, 1.2-meter-diameter vacuum pipes arranged in an L-shape. A test mass with a mirror on it is suspended by wire at each of the four ends of the pipes. Ultra-stable laser light is reflected from the mirrors and travels back and forth along the vacuum pipes ( [link] ). If gravitational waves pass through the LIGO instrument, then, according to Einstein’s theory, the waves will affect local spacetime—they will alternately stretch and shrink the distance the laser light must travel between the mirrors ever so slightly. When one arm of the instrument gets longer, the other will get shorter, and vice versa.

Gravitational wave telescope.

Aerial Photograph of the LIGO Facility. The main building is shown at center, with one of the 4-km long tubes extending toward the horizon at upper left. A portion of the other tube is seen at right.
An aerial view of the LIGO facility at Livingston, Louisiana. Extending to the upper left and far right of the image are the 4-kilometer-long detectors. (credit: modification of work by Caltech/MIT/LIGO Laboratory)

The challenge of this experiment lies in that phrase “ever so slightly.” In fact, to detect a gravitational wave, the change in the distance to the mirror must be measured with an accuracy of one ten-thousandth the diameter of a proton . In 1972, Rainer Weiss of MIT wrote a paper suggesting how this seemingly impossible task might be accomplished.

A great deal of new technology had to be developed, and work on the laboratory, with funding from the National Science Foundation, began in 1979. A full-scale prototype to demonstrate the technology was built and operated from 2002 to 2010, but the prototype was not expected to have the sensitivity required to actually detect gravitational waves from an astronomical source. Advanced LIGO, built to be more precise with the improved technology developed in the prototype, went into operation in 2015—and almost immediately detected gravitational waves.

What LIGO found was gravitational wave    s produced in the final fraction of a second of the merger of two black holes ( [link] ). The black holes had masses of 20 and 36 times the mass of the Sun, and the merger took place 1.3 billion years ago—the gravitational waves occurred so far away that it has taken that long for them, traveling at the speed of light, to reach us.

In the cataclysm of the merger, about three times the mass of the Sun was converted to energy (recall E = mc 2 ). During the tiny fraction of a second for the merger to take place, this event produced power about 50 times the power produced by all the stars in the entire visible universe—but the power was all in the form of gravitational waves and hence was invisible to our instruments, except to LIGO. The event was recorded in Louisiana about 7 milliseconds before the detection in Washington—just the right distance given the speed at which gravitational waves travel—and indicates that the source was located somewhere in the southern hemisphere sky. Unfortunately, the merger of two black holes is not expected to produce any light, so this is the only observation we have of the event.

Signal produced by a gravitational wave.

Signal Produced by a Gravitational Wave. Panel (a), at top, shows three measurements of a gravitational wave signal. At top is the “LIGO Hanford Data”, at center is the “LIGO Livingston Data” and bottom is the combined plot of “LIGO Hanford Data (shifted) and LIGO Livingston Data”. The vertical axis for each measurement is labeled “Strain (10-21)”, ranging from -1.0 at bottom to 1.0 at top, in increments of 0.5. The horizontal axis is labeled “Time (sec)”, ranging from 0.25 at left to 0.45 at right, in increments of 0.05. Each plot begins at left with a slight oscillation between -0.05 and 0.05 until T = 0.35 sec, when the oscillations increase in amplitude to -1.0 to 1.0. At T = 0.425 sec the oscillations diminish to their original levels. Panel (b), at bottom, shows an artist’s impression of two black holes orbiting each other. Of note is the distortion of the light from background stars due to the strong gravitational field of the pair.
(a) The top panel shows the signal measured at Hanford, Washington; the middle panel shows the signal measured at Livingston, Louisiana. The smoother thin curve in each panel shows the predicted signal, based on Einstein’s general theory of relativity, produced by the merger of two black holes. The bottom panel shows a superposition of the waves detected at the two LIGO observatories. Note the remarkable agreement of the two independent observations and of the observations with theory. (b) The painting shows an artist’s impression of two massive black holes spiraling inward toward an eventual merger. (credit a, b: modification of work by SXS)

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask