<< Chapter < Page | Chapter >> Page > |
The Minor Planet Center is a worldwide repository of data on asteroids. Visit it online to find out about the latest discoveries related to the small bodies in our solar system. (Note that some of the material on this site is technical; it’s best to click on the menu tab for the “public” for information more at the level of this textbook.)
The Largest Asteroids | |||||
---|---|---|---|---|---|
# | Name | Year of Discovery | Orbit’s Semimajor Axis (AU) | Diameter (km) | Compositional Class |
1 | Ceres | 1801 | 2.77 | 940 | C (carbonaceous) |
2 | Pallas | 1802 | 2.77 | 540 | C (carbonaceous) |
3 | Juno | 1804 | 2.67 | 265 | S (stony) |
4 | Vesta | 1807 | 2.36 | 510 | basaltic |
10 | Hygiea | 1849 | 3.14 | 410 | C (carbonaceous) |
16 | Psyche | 1852 | 2.92 | 265 | M (metallic) |
31 | Euphrosyne | 1854 | 3.15 | 250 | C (carbonaceous) |
52 | Europa | 1858 | 3.10 | 280 | C (carbonaceous) |
65 | Cybele | 1861 | 3.43 | 280 | C (carbonaceous) |
87 | Sylvia | 1866 | 3.48 | 275 | C (carbonaceous) |
451 | Patientia | 1899 | 3.06 | 260 | C (carbonaceous) |
511 | Davida | 1903 | 3.16 | 310 | C (carbonaceous) |
704 | Interamnia | 1910 | 3.06 | 310 | C (carbonaceous) |
The asteroids all revolve about the Sun in the same direction as the planets, and most of their orbits lie near the plane in which Earth and other planets circle. The majority of asteroids are in the asteroid belt , the region between Mars and Jupiter that contains all asteroids with orbital periods between 3.3 to 6 years ( [link] ). Although more than 75% of the known asteroids are in the belt, they are not closely spaced (as they are sometimes depicted in science fiction movies). The volume of the belt is actually very large, and the typical spacing between objects (down to 1 kilometer in size) is several million kilometers. (This was fortunate for spacecraft like Galileo, Cassini, Rosetta , and New Horizons, which needed to travel through the asteroid belt without a collision.)
Still, over the long history of our solar system, there have been a good number of collisions among the asteroids themselves. In 1918, the Japanese astronomer Kiyotsugu Hirayama found that some asteroids fall into families , groups with similar orbital characteristics. He hypothesized that each family may have resulted from the breakup of a larger body or, more likely, from the collision of two asteroids. Slight differences in the speeds with which the various fragments left the collision scene account for the small spread in orbits now observed for the different asteroids in a given family. Several dozen such families exist, and observations have shown that individual members of most families have similar compositions, as we would expect if they were fragments of a common parent.
Notification Switch
Would you like to follow the 'Astronomy' conversation and receive update notifications?