<< Chapter < Page Chapter >> Page >

As we have seen, on all the giants except Uranus, heat from the inside contributes about as much energy to the atmosphere as sunlight from the outside. This means that deep convection currents of rising hot air and falling cooler air circulate throughout the atmospheres of the planets in the vertical direction.

The main features of Jupiter ’s visible clouds (see [link] and [link] , for example) are alternating dark and light bands that stretch around the planet parallel to the equator. These bands are semi-permanent features, although they shift in intensity and position from year to year. Consistent with the small tilt of Jupiter’s axis, the pattern does not change with the seasons.

More fundamental than these bands are underlying east-west wind patterns in the atmosphere, which do not appear to change at all, even over many decades. These are illustrated in [link] , which indicates how strong the winds are at each latitude for the giant planets. At Jupiter’s equator, a jet stream flows eastward with a speed of about 90 meters per second (300 kilometers per hour), similar to the speed of jet streams in Earth’s upper atmosphere. At higher latitudes there are alternating east- and west-moving streams, with each hemisphere an almost perfect mirror image of the other. Saturn shows a similar pattern, but with a much stronger equatorial jet stream, as we noted earlier.

Winds on the giant planets.

Wind Speeds of the Giant Planets. Four graphs are shown, each with the vertical axis labeled “Latitude” in degrees, running from -90 at bottom to 90 at the top in increments of 30 degrees. The horizontal axis is labeled “Eastward Wind Speed (m/s)”. Each plot has an image of its planet as the background and scaled so that zero degrees latitude on the vertical axis matches the equator of the planet. The left-most plot is of Jupiter, with the horizontal scale running from -200 m/s on the left to 200 m/s on the right, in increments of 100 m/s. A dashed line is drawn vertically upward from zero m/s. Overplotted is a red curve depicting Jupiter’s wind speed. It begins at zero m/s at the south pole, alternates between about -40 to 40 m/s until about -30 degrees latitude, where it decreases to about -80 m/s. From there it goes up to about 120 m/s around the equator. Moving northward, the speed drops until about 30 degrees north where it speeds up to about 150 m/s. The speeds then alternate again between about -40 to 40 m/s until it decreases to near zero at the north pole. Next is Saturn, with the horizontal scale running from -500 m/s on the left to 500 m/s on the right, in increments of 100 m/s. A dashed line drawn vertically upward from zero m/s. Overplotted is a red curve depicting Saturn’s wind speed. It is near zero at the south pole and alternates between zero and about 100 m/s up to near -30 degrees latitude. Then the speed increases steadily to 500 m/s at the equator. The wind speed decreases steadily to near zero at 30 degrees latitude, and alternates between zero and 100 m/s before going to near zero at the north pole. Next is Uranus, with the horizontal scale running from -400 m/s on the left to 400 m/s on the right, in increments of 200 m/s. A dashed line drawn vertically upward from zero m/s. Overplotted is a red curve depicting Uranus’ wind speed. It is near zero at the south pole and moves steadily to 200 m/s at -60 degrees latitude. It then decreases to about -50 m/s at the equator and rises steadily to 200 m/s at 60 degrees latitude before returning to zero at the north pole. Finally, Neptune, with the horizontal scale running from -600 m/s on the left to 600 m/s on the right, in increments of 300 m/s. A dashed line drawn vertically upward from zero m/s. Overplotted is a red curve depicting Neptune’s wind speed. It is near zero at the south pole, moves steadily to 250 m/s at -60 degrees latitude. It then decreases to about -300 m/s at the equator and rises steadily to 250 m/s at 60 degrees latitude before returning to zero at the north pole.
This image compares the winds of the giant planets, illustrating that wind speed (shown on the horizontal axis) and wind direction vary with latitude (shown on the vertical axis). Winds are measured relative to a planet’s internal rotation speed. A positive velocity means that the winds are blowing in the same direction as, but faster than, the planet’s internal rotation. A negative velocity means that the winds are blowing more slowly than the planet’s internal rotation. Note that Saturn’s winds move faster than those of the other planets.

The light zones on Jupiter are regions of upwelling air capped by white ammonia cirrus clouds. They apparently represent the tops of upward-moving convection currents. Recall from earlier chapters that convection is a process in which liquids, heated from underneath, have regions where hot material rises and cooler material descends. You can see convection at work if you heat oatmeal on a stovetop or watch miso soup boil. The darker belts are regions where the cooler atmosphere moves downward, completing the convection cycle; they are darker because fewer ammonia clouds mean we can see deeper into the atmosphere, perhaps down to a region of ammonium hydrosulfide (NH 4 SH) clouds. The Galileo probe sampled one of the clearest of these dry downdrafts.

In spite of the strange seasons induced by the 98° tilt of its axis, Uranus ’ basic circulation is parallel with its equator, as is the case on Jupiter and Saturn. The mass of the atmosphere and its capacity to store heat are so great that the alternating 42-year periods of sunlight and darkness have little effect. In fact, Voyager measurements show that the atmospheric temperature is even a few degrees higher on the dark winter side than on the hemisphere facing the Sun. This is another indication that the behavior of such giant planet atmospheres is a complex problem that we do not fully understand.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask