<< Chapter < Page Chapter >> Page >

In astronomy (and other sciences), it is often necessary to deal with very large or very small numbers. In fact, when numbers become truly large in everyday life, such as the national debt in the United States, we call them astronomical. Among the ideas astronomers must routinely deal with is that the Earth is 150,000,000,000 meters from the Sun, and the mass of the hydrogen atom is 0.00000000000000000000000000167 kilograms. No one in his or her right mind would want to continue writing so many zeros!

Instead, scientists have agreed on a kind of shorthand notation, which is not only easier to write, but (as we shall see) makes multiplication and division of large and small numbers much less difficult. If you have never used this powers-of-ten notation or scientific notation, it may take a bit of time to get used to it, but you will soon find it much easier than keeping track of all those zeros.

Writing large numbers

In scientific notation, we generally agree to have only one number to the left of the decimal point. If a number is not in this format, it must be changed. The number 6 is already in the right format, because for integers, we understand there to be a decimal point to the right of them. So 6 is really 6., and there is indeed only one number to the left of the decimal point. But the number 965 (which is 965.) has three numbers to the left of the decimal point, and is thus ripe for conversion.

To change 965 to proper form, we must make it 9.65 and then keep track of the change we have made. (Think of the number as a weekly salary and suddenly it makes a lot of difference whether we have $965 or $9.65.) We keep track of the number of places we moved the decimal point by expressing it as a power of ten. So 965 becomes 9.65 × 10 2 or 9.65 multiplied by ten to the second power. The small raised 2 is called an exponent, and it tells us how many times we moved the decimal point to the left.

Note that 10 2 also designates 10 squared, or 10 × 10, which equals 100. And 9.65 × 100 is just 965, the number we started with. Another way to look at scientific notation is that we separate out the messy numbers out front, and leave the smooth units of ten for the exponent to denote. So a number like 1,372,568 becomes 1.372568 times a million (10 6 ) or 1.372568 times 10 multiplied by itself 6 times. We had to move the decimal point six places to the left (from its place after the 8) to get the number into the form where there is only one digit to the left of the decimal point.

The reason we call this powers-of-ten notation is that our counting system is based on increases of ten; each place in our numbering system is ten times greater than the place to the right of it. As you have probably learned, this got started because human beings have ten fingers and we started counting with them. (It is interesting to speculate that if we ever meet intelligent life-forms with only eight fingers, their counting system would probably be a powers-of-eight notation!)

So, in the example we started with, the number of meters from Earth to the Sun is 1.5 × 10 11 . Elsewhere in the book, we mention that a string 1 light-year long would fit around Earth’s equator 236 million or 236,000,000 times. In scientific notation, this would become 2.36 × 10 8 . Now if you like expressing things in millions, as the annual reports of successful companies do, you might like to write this number as 236 × 10 6 . However, the usual convention is to have only one number to the left of the decimal point.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask