<< Chapter < Page | Chapter >> Page > |
In summary, the primary vesicles help to establish the basic regions of the nervous system: forebrain, midbrain, and hindbrain. These divisions are useful in certain situations, but they are not equivalent regions. The midbrain is small compared with the hindbrain and particularly the forebrain. The secondary vesicles go on to establish the major regions of the adult nervous system that will be followed in this text. The telencephalon is the cerebrum, which is the major portion of the human brain. The diencephalon continues to be referred to by this Greek name, because there is no better term for it (dia- = “through”). The diencephalon is between the cerebrum and the rest of the nervous system and can be described as the region through which all projections have to pass between the cerebrum and everything else. The brain stem includes the midbrain, pons, and medulla, which correspond to the mesencephalon, metencephalon, and myelencephalon. The cerebellum, being a large portion of the brain, is considered a separate region. [link] connects the different stages of development to the adult structures of the CNS.
One other benefit of considering embryonic development is that certain connections are more obvious because of how these adult structures are related. The retina, which began as part of the diencephalon, is primarily connected to the diencephalon. The eyes are just inferior to the anterior-most part of the cerebrum, but the optic nerve extends back to the thalamus as the optic tract, with branches into a region of the hypothalamus. There is also a connection of the optic tract to the midbrain, but the mesencephalon is adjacent to the diencephalon, so that is not difficult to imagine. The cerebellum originates out of the metencephalon, and its largest white matter connection is to the pons, also from the metencephalon. There are connections between the cerebellum and both the medulla and midbrain, which are adjacent structures in the secondary vesicle stage of development. In the adult brain, the cerebellum seems close to the cerebrum, but there is no direct connection between them.
Another aspect of the adult CNS structures that relates to embryonic development is the ventricles—open spaces within the CNS where cerebrospinal fluid circulates. They are the remnant of the hollow center of the neural tube. The four ventricles and the tubular spaces associated with them can be linked back to the hollow center of the embryonic brain (see [link] ).
Stages of Embryonic Development | ||||
---|---|---|---|---|
Neural tube | Primary vesicle stage | Secondary vesicle stage | Adult structures | Ventricles |
Anterior neural tube | Prosencephalon | Telencephalon | Cerebrum | Lateral ventricles |
Anterior neural tube | Prosencephalon | Diencephalon | Diencephalon | Third ventricle |
Anterior neural tube | Mesencephalon | Mesencephalon | Midbrain | Cerebral aqueduct |
Anterior neural tube | Rhombencephalon | Metencephalon | Pons cerebellum | Fourth ventricle |
Anterior neural tube | Rhombencephalon | Myelencephalon | Medulla | Fourth ventricle |
Posterior neural tube | Spinal cord | Central canal |
Notification Switch
Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?