<< Chapter < Page Chapter >> Page >

As we have seen, the depolarization and repolarization of an action potential are dependent on two types of channels (the voltage-gated Na + channel and the voltage-gated K + channel). The voltage-gated Na + channel actually has two gates. One is the activation gate    , which opens when the membrane potential crosses -55 mV. The other gate is the inactivation gate    , which closes after a specific period of time—on the order of a fraction of a millisecond. When a cell is at rest, the activation gate is closed and the inactivation gate is open. However, when the threshold is reached, the activation gate opens, allowing Na + to rush into the cell. Timed with the peak of depolarization, the inactivation gate closes. During repolarization, no more sodium can enter the cell. When the membrane potential passes -55 mV again, the activation gate closes. After that, the inactivation gate re-opens, making the channel ready to start the whole process over again.

The voltage-gated K + channel has only one gate, which is sensitive to a membrane voltage of -50 mV. However, it does not open as quickly as the voltage-gated Na + channel does. It might take a fraction of a millisecond for the channel to open once that voltage has been reached. The timing of this coincides exactly with when the Na + flow peaks, so voltage-gated K + channels open just as the voltage-gated Na + channels are being inactivated. As the membrane potential repolarizes and the voltage passes -50 mV again, the channel closes—again, with a little delay. Potassium continues to leave the cell for a short while and the membrane potential becomes more negative, resulting in the hyperpolarizing overshoot. Then the channel closes again and the membrane can return to the resting potential because of the ongoing activity of the non-gated channels and the Na + /K + pump.

All of this takes place within approximately 2 milliseconds ( [link] ). While an action potential is in progress, another one cannot be initiated. That effect is referred to as the refractory period    . There are two phases of the refractory period: the absolute refractory period    and the relative refractory period    . During the absolute phase, another action potential will not start. This is because of the inactivation gate of the voltage-gated Na + channel. Once that channel is back to its resting conformation (less than -55 mV), a new action potential could be started, but only by a stronger stimulus than the one that initiated the current action potential. This is because of the flow of K + out of the cell. Because that ion is rushing out, any Na + that tries to enter will not depolarize the cell, but will only keep the cell from hyperpolarizing.

Stages of an action potential

This graph has membrane potential, in millivolts, on the X axis, ranging from negative 70 to positive thirty. Time is on the X axis. In step one, which is labeled at rest, the plot line is steady at negative seventy millivolts. In step 2, a stimulus is applied, causing the plot line to increase to positive 30 millivolts. The curve sharply increases at step three, labeled voltage rises. After peaking at positive thirty, the plot line then quickly drops back to negative 70. This is the fourth step, labeled voltage falls. The plot line continues to drop below negative 70 and this is step 5, labeled end of action potential. Finally, the plot line gradually increases back to negative seventy millivolts, which is step 6, labeled return to rest.
Plotting voltage measured across the cell membrane against time, the events of the action potential can be related to specific changes in the membrane voltage. (1) At rest, the membrane voltage is -70 mV. (2) The membrane begins to depolarize when an external stimulus is applied. (3) The membrane voltage begins a rapid rise toward +30 mV. (4) The membrane voltage starts to return to a negative value. (5) Repolarization continues past the resting membrane voltage, resulting in hyperpolarization. (6) The membrane voltage returns to the resting value shortly after hyperpolarization.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask