Convert 90 minutes to hours.
If you missed this problem, review
[link] .
Solve uniform motion applications
When planning a road trip, it often helps to know how long it will take to reach the destination or how far to travel each day. We would use the distance, rate, and time formula,
which we have already seen.
In this section, we will use this formula in situations that require a little more algebra to solve than the ones we saw earlier. Generally, we will be looking at comparing two scenarios, such as two vehicles travelling at different rates or in opposite directions. When the speed of each vehicle is constant, we call applications like this
uniform motion problems .
Our problem-solving strategies will still apply here, but we will add to the first step. The first step will include drawing a diagram that shows what is happening in the example. Drawing the diagram helps us understand what is happening so that we will write an appropriate equation. Then we will make a table to organize the information, like we did for the money applications.
The steps are listed here for easy reference:
Use a problem-solving strategy in distance, rate, and time applications.
Read the problem. Make sure all the words and ideas are understood.
Draw a diagram to illustrate what it happening.
Create a table to organize the information.
Label the columns rate, time, distance.
List the two scenarios.
Write in the information you know.
Identify what we are looking for.
Name what we are looking for. Choose a variable to represent that quantity.
Complete the chart.
Use variable expressions to represent that quantity in each row.
Multiply the rate times the time to get the distance.
Translate into an equation.
Restate the problem in one sentence with all the important information.
Then, translate the sentence into an equation.
Solve the equation using good algebra techniques.
Check the answer in the problem and make sure it makes sense.
Answer the question with a complete sentence.
An express train and a local train leave Pittsburgh to travel to Washington, D.C. The express train can make the trip in 4 hours and the local train takes 5 hours for the trip. The speed of the express train is 12 miles per hour faster than the speed of the local train. Find the speed of both trains.
Solution
Step 1. Read the problem. Make sure all the words and ideas are understood.
Draw a diagram to illustrate what it happening. Shown below is a sketch of what is happening in the example.
Create a table to organize the information.
Label the columns “Rate,” “Time,” and “Distance.”
List the two scenarios.
Write in the information you know.
Step 2. Identify what we are looking for.
We are asked to find the speed of both trains.
Notice that the distance formula uses the word “rate,” but it is more common to use “speed” when we talk about vehicles in everyday English.
Step 3. Name what we are looking for. Choose a variable to represent that quantity.
Complete the chart
Use variable expressions to represent that quantity in each row.
We are looking for the speed of the trains. Let’s let
r represent the speed of the local train. Since the speed of the express train is 12 mph faster, we represent that as
Fill in the speeds into the chart.
Multiply the rate times the time to get the distance.
Step 4. Translate into an equation.
Restate the problem in one sentence with all the important information.
Then, translate the sentence into an equation.
The equation to model this situation will come from the relation between the distances. Look at the diagram we drew above. How is the distance travelled by the express train related to the distance travelled by the local train?
Since both trains leave from Pittsburgh and travel to Washington, D.C. they travel the same distance. So we write:
Step 5. Solve the equation using good algebra techniques.
Now solve this equation.
So the speed of the local train is 48 mph.
Find the speed of the express train.
The speed of the express train is 60 mph.
Step 6. Check the answer in the problem and make sure it makes sense.
Step 7. Answer the question with a complete sentence.
The speed of the local train is 48 mph and the speed of the express train is 60 mph.
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
from theory: distance [miles] = speed [mph] × time [hours]
info #1
speed_Dennis × 1.5 = speed_Wayne × 2
=> speed_Wayne = 0.75 × speed_Dennis (i)
info #2
speed_Dennis = speed_Wayne + 7 [mph] (ii)
use (i) in (ii) => [...]
speed_Dennis = 28 mph
speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5.
Substituting the first equation into the second:
W * 2 = (W + 7) * 1.5
W * 2 = W * 1.5 + 7 * 1.5
0.5 * W = 7 * 1.5
W = 7 * 3 or 21
W is 21
D = W + 7
D = 21 + 7
D = 28
Salma
Devon is 32 32 years older than his son, Milan. The sum of both their ages is 54 54. Using the variables d d and m m to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67.
Check:
Sales = 3542
Commission 12%=425.04
Pay = 500 + 425.04 = 925.04.
925.04 > 925.00
Munster
difference between rational and irrational numbers
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?