<< Chapter < Page | Chapter >> Page > |
Pilar bought a purse on sale for $18, which is one-half of the original price. What was the original price of the purse?
Step 1. Read the problem. Read the problem two or more times if necessary. Look up any unfamiliar words in a dictionary or on the internet.
Step 2. Identify what you are looking for. Did you ever go into your bedroom to get something and then forget what you were looking for? It’s hard to find something if you are not sure what it is! Read the problem again and look for words that tell you what you are looking for!
Step 3. Name what we are looking for. Choose a variable to represent that quantity. We can use any letter for the variable, but choose one that makes it easy to remember what it represents.
Step 4. Translate into an equation. It may be helpful to restate the problem in one sentence with all the important information. Translate the English sentence into an algebraic equation.
Reread the problem carefully to see how the given information is related. Often, there is one sentence that gives this information, or it may help to write one sentence with all the important information. Look for clue words to help translate the sentence into algebra. Translate the sentence into an equation.
Restate the problem in one sentence with all the important information. | |
Translate into an equation. |
Step 5. Solve the equation using good algebraic techniques. Even if you know the solution right away, using good algebraic techniques here will better prepare you to solve problems that do not have obvious answers.
Solve the equation. | |
Multiply both sides by 2. | |
Simplify. |
Step 6. Check the answer in the problem to make sure it makes sense. We solved the equation and found that which means “the original price” was $36.
Step 7. Answer the question with a complete sentence. The problem asked “What was the original price of the purse?”
If this were a homework exercise, our work might look like this:
Pilar bought a purse on sale for $18, which is one-half the original price. What was the original price of the purse?
Let the original price. | |
18 is one-half the original price. | |
Multiply both sides by 2. | |
Simplify. | |
Check. Is $36 a reasonable price for a purse? | |
Yes. | |
Is 18 one half of 36? | |
The original price of the purse was $36. |
Joaquin bought a bookcase on sale for $120, which was two-thirds of the original price. What was the original price of the bookcase?
$180
Two-fifths of the songs in Mariel’s playlist are country. If there are 16 country songs, what is the total number of songs in the playlist?
40
Let’s try this approach with another example.
Ginny and her classmates formed a study group. The number of girls in the study group was three more than twice the number of boys. There were 11 girls in the study group. How many boys were in the study group?
Step 1. Read the problem. | |
Step 2. Identify what we are looking for. | How many boys were in the study group? |
Step 3. Name. Choose a variable to represent the number of boys. | Let the number of boys. |
Step 4. Translate. Restate the problem in one sentence with all the important information. | |
Translate into an equation. | |
Step 5. Solve the equation. | |
Subtract 3 from each side. | |
Simplify. | |
Divide each side by 2. | |
Simplify. | |
Step 6. Check. First, is our answer reasonable? Yes, having 4 boys in a study group seems OK. The problem says the number of girls was 3 more than twice the number of boys. If there are four boys, does that make eleven girls? Twice 4 boys is 8. Three more than 8 is 11. | |
Step 7. Answer the question. | There were 4 boys in the study group. |
Notification Switch
Would you like to follow the 'Elementary algebra' conversation and receive update notifications?