<< Chapter < Page Chapter >> Page >

Using the fundamental theorem of algebra

Now that we can find rational zeros for a polynomial function, we will look at a theorem that discusses the number of complex zeros of a polynomial function. The Fundamental Theorem of Algebra tells us that every polynomial function has at least one complex zero. This theorem forms the foundation for solving polynomial equations.

Suppose f is a polynomial function of degree four, and f ( x ) = 0. The Fundamental Theorem of Algebra states that there is at least one complex solution, call it c 1 . By the Factor Theorem, we can write f ( x ) as a product of x c 1 and a polynomial quotient. Since x c 1 is linear, the polynomial quotient will be of degree three. Now we apply the Fundamental Theorem of Algebra to the third-degree polynomial quotient. It will have at least one complex zero, call it c 2 . So we can write the polynomial quotient as a product of x c 2 and a new polynomial quotient of degree two. Continue to apply the Fundamental Theorem of Algebra until all of the zeros are found. There will be four of them and each one will yield a factor of f ( x ) .

The fundamental theorem of algebra

The Fundamental Theorem of Algebra    states that, if f ( x ) is a polynomial of degree n>0 , then f ( x ) has at least one complex zero.

We can use this theorem to argue that, if f ( x ) is a polynomial of degree n > 0 , and a is a non-zero real number, then f ( x ) has exactly n linear factors

f ( x ) = a ( x c 1 ) ( x c 2 ) ... ( x c n )

where c 1 , c 2 , ... , c n are complex numbers. Therefore, f ( x ) has n roots if we allow for multiplicities.

Does every polynomial have at least one imaginary zero?

No. Real numbers are a subset of complex numbers, but not the other way around. A complex number is not necessarily imaginary. Real numbers are also complex numbers.

Finding the zeros of a polynomial function with complex zeros

Find the zeros of f ( x ) = 3 x 3 + 9 x 2 + x + 3.

The Rational Zero Theorem tells us that if p q is a zero of f ( x ) , then p is a factor of 3 and q is a factor of 3.

p q = factor of constant term factor of leading coefficient = factor of 3 factor of 3

The factors of 3 are ±1 and ±3. The possible values for p q , and therefore the possible rational zeros for the function, are ±3 , ±1, and  ± 1 3 . We will use synthetic division to evaluate each possible zero until we find one that gives a remainder of 0. Let’s begin with –3.

Dividing by ( x + 3 ) gives a remainder of 0, so –3 is a zero of the function. The polynomial can be written as

( x + 3 ) ( 3 x 2 + 1 )

We can then set the quadratic equal to 0 and solve to find the other zeros of the function.

3 x 2 + 1 = 0 x 2 = 1 3 x = ± 1 3 = ± i 3 3

The zeros of f ( x ) are –3 and ± i 3 3 .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the zeros of f ( x ) = 2 x 3 + 5 x 2 11 x + 4.

The zeros are –4,  1 2 ,  and 1 .

Got questions? Get instant answers now!

Using the linear factorization theorem to find polynomials with given zeros

A vital implication of the Fundamental Theorem of Algebra    , as we stated above, is that a polynomial function of degree n will have n zeros in the set of complex numbers, if we allow for multiplicities. This means that we can factor the polynomial function into n factors. The Linear Factorization Theorem    tells us that a polynomial function will have the same number of factors as its degree, and that each factor will be in the form ( x c ) , where c is a complex number.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask