<< Chapter < Page Chapter >> Page >

Given the basic exponential growth    equation A = A 0 e k t , doubling time can be found by solving for when the original quantity has doubled, that is, by solving 2 A 0 = A 0 e k t .

The formula is derived as follows:

2 A 0 = A 0 e k t 2 = e k t Divide by  A 0 . ln 2 = k t Take the natural logarithm . t = ln 2 k Divide by the coefficient of  t .

Thus the doubling time is

t = ln 2 k

Finding a function that describes exponential growth

According to Moore’s Law, the doubling time for the number of transistors that can be put on a computer chip is approximately two years. Give a function that describes this behavior.

The formula is derived as follows:

t = ln 2 k The doubling time formula . 2 = ln 2 k Use a doubling time of two years . k = ln 2 2 Multiply by  k  and divide by 2 . A = A 0 e ln 2 2 t Substitute  k  into the continuous growth formula .

The function is A = A 0 e ln 2 2 t .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Recent data suggests that, as of 2013, the rate of growth predicted by Moore’s Law no longer holds. Growth has slowed to a doubling time of approximately three years. Find the new function that takes that longer doubling time into account.

f ( t ) = A 0 e ln 2 3 t

Got questions? Get instant answers now!

Using newton’s law of cooling

Exponential decay can also be applied to temperature. When a hot object is left in surrounding air that is at a lower temperature, the object’s temperature will decrease exponentially, leveling off as it approaches the surrounding air temperature. On a graph of the temperature function, the leveling off will correspond to a horizontal asymptote at the temperature of the surrounding air. Unless the room temperature is zero, this will correspond to a vertical shift    of the generic exponential decay function. This translation leads to Newton’s Law of Cooling    , the scientific formula for temperature as a function of time as an object’s temperature is equalized with the ambient temperature

T ( t ) = a e k t + T s

This formula is derived as follows:

T ( t ) = A b c t + T s T ( t ) = A e ln ( b c t ) + T s Laws of logarithms . T ( t ) = A e c t ln b + T s Laws of logarithms . T ( t ) = A e k t + T s Rename the constant  c   ln   b ,  calling it  k .

Newton’s law of cooling

The temperature of an object, T , in surrounding air with temperature T s will behave according to the formula

T ( t ) = A e k t + T s
where
  • t is time
  • A is the difference between the initial temperature of the object and the surroundings
  • k is a constant, the continuous rate of cooling of the object

Given a set of conditions, apply Newton’s Law of Cooling.

  1. Set T s equal to the y -coordinate of the horizontal asymptote (usually the ambient temperature).
  2. Substitute the given values into the continuous growth formula T ( t ) = A e k t + T s to find the parameters A and k .
  3. Substitute in the desired time to find the temperature or the desired temperature to find the time.

Using newton’s law of cooling

A cheesecake is taken out of the oven with an ideal internal temperature of 165°F, and is placed into a 35°F refrigerator. After 10 minutes, the cheesecake has cooled to 150°F . If we must wait until the cheesecake has cooled to 70°F before we eat it, how long will we have to wait?

Because the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s temperature will decay exponentially toward 35, following the equation

T ( t ) = A e k t + 35

We know the initial temperature was 165, so T ( 0 ) = 1 6 5 .

165 = A e k 0 + 35 Substitute  ( 0 , 165 ) . A = 130 Solve for  A .

We were given another data point, T ( 1 0 ) = 1 5 0 , which we can use to solve for k .

                150 = 130 e k 10 + 35 Substitute (10, 150) .                 115 = 130 e k 10 Subtract 35 .                115 130 = e 10 k Divide by 130 .           ln ( 115 130 ) = 10 k Take the natural log of both sides .                      k = ln ( 115 130 ) 10 = 0.0123 Divide by the coefficient of  k .

This gives us the equation for the cooling of the cheesecake: T ( t ) = 1 3 0 e 0 . 0 1 2 3 t + 3 5 .

Now we can solve for the time it will take for the temperature to cool to 70 degrees.

70 = 130 e 0.0123 t + 35 Substitute in 70 for  T ( t ) . 35 = 130 e 0.0123 t Subtract 35 . 35 130 = e 0.0123 t Divide by 130 . ln ( 35 130 ) = 0.0123 t Take the natural log of both sides t = ln ( 35 130 ) 0.0123 106.68 Divide by the coefficient of  t .

It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool to 70°F .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask