To simplify, let’s start by factoring out the inside of the function.
By factoring the inside, we can first horizontally stretch by 2, as indicated by the
on the inside of the function. Remember that twice the size of 0 is still 0, so the point (0,2) remains at (0,2) while the point (2,0) will stretch to (4,0). See
[link] .
Next, we horizontally shift left by 2 units, as indicated by
See
[link] .
Last, we vertically shift down by 3 to complete our sketch, as indicated by the
on the outside of the function. See
[link] .
A function can be shifted vertically by adding a constant to the output. See
[link] and
[link] .
A function can be shifted horizontally by adding a constant to the input. See
[link] ,
[link] , and
[link] .
Relating the shift to the context of a problem makes it possible to compare and interpret vertical and horizontal shifts. See
[link] .
Vertical and horizontal shifts are often combined. See
[link] and
[link] .
A vertical reflection reflects a graph about the
axis. A graph can be reflected vertically by multiplying the output by –1.
A horizontal reflection reflects a graph about the
axis. A graph can be reflected horizontally by multiplying the input by –1.
A graph can be reflected both vertically and horizontally. The order in which the reflections are applied does not affect the final graph. See
[link] .
A function presented in tabular form can also be reflected by multiplying the values in the input and output rows or columns accordingly. See
[link] .
A function presented as an equation can be reflected by applying transformations one at a time. See
[link] .
Even functions are symmetric about the
axis, whereas odd functions are symmetric about the origin.
Even functions satisfy the condition
Odd functions satisfy the condition
A function can be odd, even, or neither. See
[link] .
A function can be compressed or stretched vertically by multiplying the output by a constant. See
[link] ,
[link] , and
[link] .
A function can be compressed or stretched horizontally by multiplying the input by a constant. See
[link] ,
[link] , and
[link] .
The order in which different transformations are applied does affect the final function. Both vertical and horizontal transformations must be applied in the order given. However, a vertical transformation may be combined with a horizontal transformation in any order. See
[link] and
[link] .
Section exercises
Verbal
When examining the formula of a function that is the result of multiple transformations, how can you tell a horizontal shift from a vertical shift?
A horizontal shift results when a constant is added to or subtracted from the input. A vertical shifts results when a constant is added to or subtracted from the output.
A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?