<< Chapter < Page Chapter >> Page >

Using the model in [link] , estimate the number of cases of flu on day 15.

895 cases on day 15

Got questions? Get instant answers now!

Choosing an appropriate model for data

Now that we have discussed various mathematical models, we need to learn how to choose the appropriate model for the raw data we have. Many factors influence the choice of a mathematical model, among which are experience, scientific laws, and patterns in the data itself. Not all data can be described by elementary functions. Sometimes, a function is chosen that approximates the data over a given interval. For instance, suppose data were gathered on the number of homes bought in the United States from the years 1960 to 2013. After plotting these data in a scatter plot, we notice that the shape of the data from the years 2000 to 2013 follow a logarithmic curve. We could restrict the interval from 2000 to 2010, apply regression analysis using a logarithmic model, and use it to predict the number of home buyers for the year 2015.

Three kinds of functions that are often useful in mathematical models are linear functions, exponential functions, and logarithmic functions. If the data lies on a straight line, or seems to lie approximately along a straight line, a linear model may be best. If the data is non-linear, we often consider an exponential or logarithmic model, though other models, such as quadratic models, may also be considered.

In choosing between an exponential model and a logarithmic model, we look at the way the data curves. This is called the concavity. If we draw a line between two data points, and all (or most) of the data between those two points lies above that line, we say the curve is concave down. We can think of it as a bowl that bends downward and therefore cannot hold water. If all (or most) of the data between those two points lies below the line, we say the curve is concave up. In this case, we can think of a bowl that bends upward and can therefore hold water. An exponential curve, whether rising or falling, whether representing growth or decay, is always concave up away from its horizontal asymptote. A logarithmic curve is always concave away from its vertical asymptote. In the case of positive data, which is the most common case, an exponential curve is always concave up, and a logarithmic curve always concave down.

A logistic curve changes concavity. It starts out concave up and then changes to concave down beyond a certain point, called a point of inflection.

After using the graph to help us choose a type of function to use as a model, we substitute points, and solve to find the parameters. We reduce round-off error by choosing points as far apart as possible.

Choosing a mathematical model

Does a linear, exponential, logarithmic, or logistic model best fit the values listed in [link] ? Find the model, and use a graph to check your choice.

x 1 2 3 4 5 6 7 8 9
y 0 1.386 2.197 2.773 3.219 3.584 3.892 4.159 4.394

First, plot the data on a graph as in [link] . For the purpose of graphing, round the data to two significant digits.

Graph of the previous table’s values.

Clearly, the points do not lie on a straight line, so we reject a linear model. If we draw a line between any two of the points, most or all of the points between those two points lie above the line, so the graph is concave down, suggesting a logarithmic model. We can try y = a ln ( b x ) . Plugging in the first point, ( 1,0 ) , gives 0 = a ln b . We reject the case that a = 0 (if it were, all outputs would be 0), so we know ln ( b ) = 0. Thus b = 1 and y = a ln ( x ) . Next we can use the point ( 9,4 .394 ) to solve for a :

y = a ln ( x ) 4.394 = a ln ( 9 ) a = 4.394 ln ( 9 )

Because a = 4.394 ln ( 9 ) 2 , an appropriate model for the data is y = 2 ln ( x ) .

To check the accuracy of the model, we graph the function together with the given points as in [link] .

Graph of previous table’s values showing that it fits the function y=2ln(x) with an asymptote at x=0.
The graph of y = 2 ln x .

We can conclude that the model is a good fit to the data.

Compare [link] to the graph of y = ln ( x 2 ) shown in [link] .

Graph of previous table’s values showing that it fits the function y=2ln(x) with an asymptote at x=0.
The graph of y = ln ( x 2 )

The graphs appear to be identical when x > 0. A quick check confirms this conclusion: y = ln ( x 2 ) = 2 ln ( x ) for x > 0.

However, if x < 0 , the graph of y = ln ( x 2 ) includes a “extra” branch, as shown in [link] . This occurs because, while y = 2 ln ( x ) cannot have negative values in the domain (as such values would force the argument to be negative), the function y = ln ( x 2 ) can have negative domain values.

Graph of y=ln(x^2).
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

explain the basic method of power of power rule under indices.
Sumo Reply
Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask