<< Chapter < Page Chapter >> Page >

Deriving the equation of an ellipse centered at the origin

To derive the equation of an ellipse    centered at the origin, we begin with the foci ( c , 0 ) and ( c , 0 ) . The ellipse is the set of all points ( x , y ) such that the sum of the distances from ( x , y ) to the foci is constant, as shown in [link] .

If ( a , 0 ) is a vertex    of the ellipse, the distance from ( c , 0 ) to ( a , 0 ) is a ( c ) = a + c . The distance from ( c , 0 ) to ( a , 0 ) is a c . The sum of the distances from the foci    to the vertex is

( a + c ) + ( a c ) = 2 a

If ( x , y ) is a point on the ellipse, then we can define the following variables:

d 1 = the distance from  ( c , 0 )  to  ( x , y ) d 2 = the distance from  ( c , 0 )  to  ( x , y )

By the definition of an ellipse, d 1 + d 2 is constant for any point ( x , y ) on the ellipse. We know that the sum of these distances is 2 a for the vertex ( a , 0 ) . It follows that d 1 + d 2 = 2 a for any point on the ellipse. We will begin the derivation by applying the distance formula. The rest of the derivation is algebraic.

                                       d 1 + d 2 = ( x ( c ) ) 2 + ( y 0 ) 2 + ( x c ) 2 + ( y 0 ) 2 = 2 a Distance formula ( x + c ) 2 + y 2 + ( x c ) 2 + y 2 = 2 a Simplify expressions .                              ( x + c ) 2 + y 2 = 2 a ( x c ) 2 + y 2 Move radical to opposite side .                                ( x + c ) 2 + y 2 = [ 2 a ( x c ) 2 + y 2 ] 2 Square both sides .                      x 2 + 2 c x + c 2 + y 2 = 4 a 2 4 a ( x c ) 2 + y 2 + ( x c ) 2 + y 2 Expand the squares .                      x 2 + 2 c x + c 2 + y 2 = 4 a 2 4 a ( x c ) 2 + y 2 + x 2 2 c x + c 2 + y 2 Expand remaining squares .                                               2 c x = 4 a 2 4 a ( x c ) 2 + y 2 2 c x Combine like terms .                                     4 c x 4 a 2 = 4 a ( x c ) 2 + y 2 Isolate the radical .                                         c x a 2 = a ( x c ) 2 + y 2 Divide by 4 .                                     [ c x a 2 ] 2 = a 2 [ ( x c ) 2 + y 2 ] 2 Square both sides .                      c 2 x 2 2 a 2 c x + a 4 = a 2 ( x 2 2 c x + c 2 + y 2 ) Expand the squares .                      c 2 x 2 2 a 2 c x + a 4 = a 2 x 2 2 a 2 c x + a 2 c 2 + a 2 y 2 Distribute  a 2 .                   a 2 x 2 c 2 x 2 + a 2 y 2 = a 4 a 2 c 2 Rewrite .                     x 2 ( a 2 c 2 ) + a 2 y 2 = a 2 ( a 2 c 2 ) Factor common terms .                                x 2 b 2 + a 2 y 2 = a 2 b 2 Set  b 2 = a 2 c 2 .                              x 2 b 2 a 2 b 2 + a 2 y 2 a 2 b 2 = a 2 b 2 a 2 b 2 Divide both sides by  a 2 b 2 .                                       x 2 a 2 + y 2 b 2 = 1 Simplify .

Thus, the standard equation of an ellipse is x 2 a 2 + y 2 b 2 = 1. This equation defines an ellipse centered at the origin. If a > b , the ellipse is stretched further in the horizontal direction, and if b > a , the ellipse is stretched further in the vertical direction.

Writing equations of ellipses centered at the origin in standard form

Standard forms of equations tell us about key features of graphs. Take a moment to recall some of the standard forms of equations we’ve worked with in the past: linear, quadratic, cubic, exponential, logarithmic, and so on. By learning to interpret standard forms of equations, we are bridging the relationship between algebraic and geometric representations of mathematical phenomena.

The key features of the ellipse    are its center, vertices , co-vertices , foci    , and lengths and positions of the major and minor axes . Just as with other equations, we can identify all of these features just by looking at the standard form of the equation. There are four variations of the standard form of the ellipse. These variations are categorized first by the location of the center (the origin or not the origin), and then by the position (horizontal or vertical). Each is presented along with a description of how the parts of the equation relate to the graph. Interpreting these parts allows us to form a mental picture of the ellipse.

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask