<< Chapter < Page Chapter >> Page >

We eliminate one variable using row operations and solve for the other. Say that we wish to solve for x . If equation (2) is multiplied by the opposite of the coefficient of y in equation (1), equation (1) is multiplied by the coefficient of y in equation (2), and we add the two equations, the variable y will be eliminated.

b 2 a 1 x + b 2 b 1 y = b 2 c 1 Multiply  R 1  by  b 2 b 1 a 2 x b 1 b 2 y = b 1 c 2 Multiply  R 2  by b 1 ________________________________________________________   b 2 a 1 x b 1 a 2 x = b 2 c 1 b 1 c 2

Now, solve for x .

b 2 a 1 x b 1 a 2 x = b 2 c 1 b 1 c 2 x ( b 2 a 1 b 1 a 2 ) = b 2 c 1 b 1 c 2                         x = b 2 c 1 b 1 c 2 b 2 a 1 b 1 a 2 = [ c 1 b 1 c 2 b 2 ] [ a 1 b 1 a 2 b 2 ]

Similarly, to solve for y , we will eliminate x .

a 2 a 1 x + a 2 b 1 y = a 2 c 1 Multiply  R 1  by  a 2 a 1 a 2 x a 1 b 2 y = a 1 c 2 Multiply  R 2  by a 1 ________________________________________________________ a 2 b 1 y a 1 b 2 y = a 2 c 1 a 1 c 2

Solving for y gives

a 2 b 1 y a 1 b 2 y = a 2 c 1 a 1 c 2 y ( a 2 b 1 a 1 b 2 ) = a 2 c 1 a 1 c 2                          y = a 2 c 1 a 1 c 2 a 2 b 1 a 1 b 2 = a 1 c 2 a 2 c 1 a 1 b 2 a 2 b 1 = | a 1 c 1 a 2 c 2 | | a 1 b 1 a 2 b 2 |

Notice that the denominator for both x and y is the determinant of the coefficient matrix.

We can use these formulas to solve for x and y , but Cramer’s Rule also introduces new notation:

  • D : determinant of the coefficient matrix
  • D x : determinant of the numerator in the solution of x
    x = D x D
  • D y : determinant of the numerator in the solution of y
    y = D y D

The key to Cramer’s Rule is replacing the variable column of interest with the constant column and calculating the determinants. We can then express x and y as a quotient of two determinants.

Cramer’s rule for 2×2 systems

Cramer’s Rule    is a method that uses determinants to solve systems of equations that have the same number of equations as variables.

Consider a system of two linear equations in two variables.

a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2

The solution using Cramer’s Rule is given as

x = D x D = | c 1 b 1 c 2 b 2 | | a 1 b 1 a 2 b 2 | , D 0 ; y = D y D = | a 1 c 1 a 2 c 2 | | a 1 b 1 a 2 b 2 | , D 0.

If we are solving for x , the x column is replaced with the constant column. If we are solving for y , the y column is replaced with the constant column.

Using cramer’s rule to solve a 2 × 2 system

Solve the following 2   ×   2 system using Cramer’s Rule.

12 x + 3 y = 15    2 x 3 y = 13

Solve for x .

x = D x D = | 15 3 13 3 | | 12 3 2 3 | = 45 39 36 6 = 84 42 = 2

Solve for y .

y = D y D = | 12 15 2 13 | | 12 3 2 3 | = 156 30 36 6 = 126 42 = −3

The solution is ( 2 , −3 ) .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Use Cramer’s Rule to solve the 2 × 2 system of equations.

   x + 2 y = −11 2 x + y = −13

( 3 , 7 )

Got questions? Get instant answers now!

Evaluating the determinant of a 3 × 3 matrix

Finding the determinant of a 2×2 matrix is straightforward, but finding the determinant of a 3×3 matrix is more complicated. One method is to augment the 3×3 matrix with a repetition of the first two columns, giving a 3×5 matrix. Then we calculate the sum of the products of entries down each of the three diagonals (upper left to lower right), and subtract the products of entries up each of the three diagonals (lower left to upper right). This is more easily understood with a visual and an example.

Find the determinant    of the 3×3 matrix.

A = [ a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 ]
  1. Augment A with the first two columns.
    det ( A ) = | a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 | a 1 a 2 a 3 b 1 b 2 b 3 |
  2. From upper left to lower right: Multiply the entries down the first diagonal. Add the result to the product of entries down the second diagonal. Add this result to the product of the entries down the third diagonal.
  3. From lower left to upper right: Subtract the product of entries up the first diagonal. From this result subtract the product of entries up the second diagonal. From this result, subtract the product of entries up the third diagonal.

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask