<< Chapter < Page Chapter >> Page >

Write each of the following products with a single base. Do not simplify further.

  1. ( ( 3 y ) 8 ) 3
  2. ( t 5 ) 7
  3. ( ( g ) 4 ) 4
  1. ( 3 y ) 24
  2. t 35
  3. ( g ) 16
Got questions? Get instant answers now!

Using the zero exponent rule of exponents

Return to the quotient rule. We made the condition that m > n so that the difference m n would never be zero or negative. What would happen if m = n ? In this case, we would use the zero exponent rule of exponents to simplify the expression to 1. To see how this is done, let us begin with an example.

t 8 t 8 = t 8 t 8 = 1

If we were to simplify the original expression using the quotient rule, we would have

t 8 t 8 = t 8 8 = t 0

If we equate the two answers, the result is t 0 = 1. This is true for any nonzero real number, or any variable representing a real number.

a 0 = 1

The sole exception is the expression 0 0 . This appears later in more advanced courses, but for now, we will consider the value to be undefined.

The zero exponent rule of exponents

For any nonzero real number a , the zero exponent rule of exponents states that

a 0 = 1

Using the zero exponent rule

Simplify each expression using the zero exponent rule of exponents.

  1. c 3 c 3
  2. −3 x 5 x 5
  3. ( j 2 k ) 4 ( j 2 k ) ( j 2 k ) 3
  4. 5 ( r s 2 ) 2 ( r s 2 ) 2

Use the zero exponent and other rules to simplify each expression.


  1. c 3 c 3 = c 3 3 = c 0 = 1

  2. −3 x 5 x 5 = −3 x 5 x 5 = −3 x 5 5 = −3 x 0 = −3 1 = −3

  3. ( j 2 k ) 4 ( j 2 k ) ( j 2 k ) 3 = ( j 2 k ) 4 ( j 2 k ) 1 + 3 Use the product rule in the denominator . = ( j 2 k ) 4 ( j 2 k ) 4 Simplify . = ( j 2 k ) 4 4 Use the quotient rule . = ( j 2 k ) 0 Simplify . = 1

  4. 5 ( r s 2 ) 2 ( r s 2 ) 2 = 5 ( r s 2 ) 2 2 Use the quotient rule . = 5 ( r s 2 ) 0 Simplify . = 5 1 Use the zero exponent rule . = 5 Simplify .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Simplify each expression using the zero exponent rule of exponents.

  1. t 7 t 7
  2. ( d e 2 ) 11 2 ( d e 2 ) 11
  3. w 4 w 2 w 6
  4. t 3 t 4 t 2 t 5
  1. 1
  2. 1 2
  3. 1
  4. 1
Got questions? Get instant answers now!

Using the negative rule of exponents

Another useful result occurs if we relax the condition that m > n in the quotient rule even further. For example, can we simplify h 3 h 5 ? When m < n —that is, where the difference m n is negative—we can use the negative rule of exponents to simplify the expression to its reciprocal.

Divide one exponential expression by another with a larger exponent. Use our example, h 3 h 5 .

h 3 h 5 = h h h h h h h h = h h h h h h h h = 1 h h = 1 h 2

If we were to simplify the original expression using the quotient rule, we would have

h 3 h 5 = h 3 5 =   h −2

Putting the answers together, we have h −2 = 1 h 2 . This is true for any nonzero real number, or any variable representing a nonzero real number.

A factor with a negative exponent becomes the same factor with a positive exponent if it is moved across the fraction bar—from numerator to denominator or vice versa.

a n = 1 a n and a n = 1 a n

We have shown that the exponential expression a n is defined when n is a natural number, 0, or the negative of a natural number. That means that a n is defined for any integer n . Also, the product and quotient rules and all of the rules we will look at soon hold for any integer n .

The negative rule of exponents

For any nonzero real number a and natural number n , the negative rule of exponents states that

a n = 1 a n

Using the negative exponent rule

Write each of the following quotients with a single base. Do not simplify further. Write answers with positive exponents.

  1. θ 3 θ 10
  2. z 2 z z 4
  3. ( −5 t 3 ) 4 ( −5 t 3 ) 8
  1. θ 3 θ 10 = θ 3 10 = θ −7 = 1 θ 7
  2. z 2 z z 4 = z 2 + 1 z 4 = z 3 z 4 = z 3 4 = z −1 = 1 z
  3. ( −5 t 3 ) 4 ( −5 t 3 ) 8 = ( −5 t 3 ) 4 8 = ( −5 t 3 ) −4 = 1 ( −5 t 3 ) 4
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

explain the basic method of power of power rule under indices.
Sumo Reply
Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask